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Abstract

This paper studies whether asset management companies use customer data to attract capital.
Exploiting information from their websites’ codes, I track when fund managers begin collecting
and analyzing data on their potential customers using tools like Google Analytics or A/B testing.
I show that funds adopting such technologies attract 1.5% higher annual flows and charge higher
fees, despite no improvement in performance. These results are concentrated in retail share
classes and decline with competition as more rival funds adopt similar tools. At the fund-family
level, adopters expand their product offerings, and new funds focus more on retail-oriented
themes. Within existing funds, I find evidence of changes in prospectus content and greater
sales efforts rather than product differentiation. Overall, data technologies allow managers to
raise more capital and charge higher fees, without passing these monetary gains on to investors.
Technological innovation in asset management extends beyond portfolio allocation decisions,
and it affects how funds attract and retain capital.
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1 Introduction

Asset managers use large volumes of data to inform investment decisions. They often
process rich datasets to predict asset payoffs and guide their portfolio choices. Yet, asset
managers compete for alpha as much as they compete for capital. A significant share of
their compensation is tied to the total assets under management (AUM) and the inflows
they attract.1 As a result, their incentives are largely aligned towards attracting flows and
increasing the total assets they manage. This makes understanding investor demand as
important as predicting asset payoffs. However, little is known about whether and how asset
management companies use data to improve their ability to attract capital, and how these
practices impact the industry’s structure.

This lack of evidence is surprising, given that firms across the economy increasingly collect
detailed information from their interactions with customers. Such data allow companies to
refine products, target marketing, and predict demand, but they also raise questions about
how the rents from data are shared between firms and consumers. The asset management
industry provides a clean setting to study these questions. Fund companies operate in a
regulatory framework that requires disclosure of product characteristics (holdings), prices
(fees), and measures of product quality such as performance —information rarely available
in other product markets. In this market, investors are a fund’s customers. They range
from unsophisticated retail clients to large institutions, allowing to observe heterogeneous
responses to an increase in managers’ data availability.

In this paper, I show that asset managers use customer data to improve their ability to
attract and retain capital. I exploit information from their websites’ codes and track the
adoption of technologies used to analyze customer data, such as Google Analytics or A/B
testing tools. These technologies, which I refer to as data technologies, allow to gather rich
information about customers —such as demographics, browsing patterns, and product
interest— that managers can use to tailor communication and product design. I find that
funds adopting data technologies attract about 1.5%more inflows per year and charge higher
fees, despite showing no improvement in performance. The effects are concentrated in retail
share classes and, within funds, arise from targeting better prospective investors. At the fund
family level, adopters of data technologies launch more funds and these funds tend to be in
retail-oriented categories, consistent with product differentiation at the margin. Altogether,
larger inflows and higher fees raise revenues for funds adopting data technologies. However,
asset management companies retain these benefits without sharing them with investors.

1See Cen, Dou, Kogan and Wu (2024) for details on US mutual funds’ contract structure. Ibert, Kaniel,
Van Nieuwerburgh and Vestman (2017) find similar compensation structure in Swedish mutual funds.
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In canonical models of the asset management industry, funds’ customers (i.e., investors)
learn managers’ skills over time (Berk and Green, 2004). They observe risk-adjusted
performance, update their prior, and reallocate capital accordingly. The implicit common
assumption in the literature has been that this learning is one-sided—investors learn about
managers, but managers have nothing to learn about investors. In practice, however, funds
have increasingly access to customers’ information. For example, Broadridge, a leading
FinTech company, offers asset managers tools that identify and analyze website visitors
by matching their IP addresses to geographical locations. By linking these data to the
headquarters of large investors such as pension funds, managers identify prospect clients
and reach out with targeted offers. Broadridge also provides analytics on future demand for
asset management products, information on the most effective distribution channels (e.g.,
financial advisors vs. direct-to-consumer), and several analyses on both own and competitors’
investors. Understanding how greater access to customer information affects an industry’s
equilibrium is central to assessing competitive and welfare outcomes of a “data economy”. I
show that, in the asset management industry, managers learn about investors using customer
data and capture the resulting monetary rents. This learning channel materially affects the
equilibrium allocation of capital to this industry.

My empirical strategy relies on information from asset managers’ websites to quantify
their willingness to collect and analyze investors’ data. A key challenge in answering
whether asset managers use customer data to attract flows is that we do not observe which
managers adopt such practices. To overcome this limitation, I track when asset managers
install technologies designed to collect and analyze customers’ data. Every website is made
of different building blocks, called technologies. For example, e-commerce often install
technologies enabling secure payments, such as Apple Pay or PayPal. I identify technologies
designed to collect and analyze customers’ data, such as Google Analytics, and the exact
installation date on asset managers’ websites. These data technologies allow to store digitized
information about user interactions on website pages. For instance, they let run A/B testing
(tools similar to Randomized Control Trials), identify which channels bring more potential
customers, track users’ search history, demographics, and audience overlap with competitors.
By observing the adoption date of data technologies by asset managers, I can proxy for when
a given manager begins collecting investors’ information. This approach provides a novel
measure to proxy for the adoption of data technologies that are otherwise unobservable.

I use a staggered difference-in-differences framework to study how asset managers change
after installing technologies that process customers’ data. I compare changes in monthly
flows (pre- and post-adoption) within the same fund and month, controlling for several
commonly used covariates. This approach allows me to reduce concerns that time-invariant
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fund characteristics or common style shocks are driving the results. First, I find that asset
managers receive more flows after adopting a data technology on their website. Funds using
technologies that analyze investors’ information receive approximately 1.5% more flows
each year. The magnitude of this effect is not negligible: it is comparable to the increase in
flows associated with a fund delivering an annual alpha of 1.75% (the 84th percentile in my
sample). In other words, the effect is similar in size to the flow-performance sensitivity for a
fund at the 84th percentile of the performance distribution.2 The result originates from an
increase in inflows with no significant change in outflows, implying that funds attract new
capital after adoption and manage larger AUM.

Second, funds charge higher expense ratios after installing data technologies. The
effect on inflows raise the question of whether asset management companies use the same
information advantage to adjust their pricing. I show that managers with more customer
data charge higher fees. This result shows that technological innovation does not always
reduce search cost frictions.3 New technologies, such as smartphone apps, might reduce
investors’ search costs, as they allow easier access to information at their fingertips. These
results, however, reveal a more complex effect of technology on the asset management
industry. When technology gives managers —not investors— more information, fees rise
rather than fall.

I conduct a series of tests to examine the empirical validity of results being driven by
managers’ learning from data. Mutual fund data at the share class level offer a nice laboratory
for studying the heterogeneity of the effects between retail and institutional investors. I find
that the effects are concentrated in retail share classes, with no impact on institutional share
classes within the same fund. These results are consistent with a learning channel, since the
technologies I study in this paper are more informative about retail investors.

The effects are unique to website technologies designed to collect and analyze customers’
data. When I conduct placebo tests using plugins unrelated to web traffic data, such as
Google Maps, I find no results. Furthermore, consistent with a learning channel, the value of
data declines as more competitors observe similar information: the effects weaken as more
funds within a fund category adopt these technologies. On a similar note, data technologies
have decreasing marginal returns, a common feature in information goods (Veldkamp,
2011). Additionally, after the adoption of a data technology, funds maintain a smaller cash
buffer and hold more illiquid assets, consistent with managers facing less uncertainty about
investors’ liquidity needs.

2The flow-performance sensitivity is the positive relationship between a fund’s risk-adjusted performance
and fund flows (Chevalier and Ellison, 1997).

3See, among many others, Thakor (2020); Basten and Ongena (2020); Hong et al. (2024); Argyle et al. (2022)
for examples in which FinTech innovations reduce search costs.
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The above results do not warrant a causal interpretation, as the adoption of data
technologies is a choice made by asset managers. Even though I find no evidence of pre-
treatment trends, managers may install these tools when they anticipate higher demand for
their products. To alleviate endogeneity concerns, I use two plausibly exogenous sources
of variation. First, because the local geographical environment plays an important role
in technology diffusion (Moretti, 2004; Conley and Udry, 2010; Gennaioli et al., 2013), I
instrument adoption with the local supply of graduates in data analytics-related fields. I
obtain the number of bachelor’s, master’s, and Ph.D. graduates from U.S. universities in data
analytics, statistics, and computer science from the Integrated Postsecondary Education Data
System (IPEDS). I then divide the total number of graduates in each fund’s commuting zone
by its population, and use this measure as an instrument for a fund’s decision to adopt a data
analytics technology. Intuitively, the instrument captures variation in local expertise that
lowers the cost of adoption. Because completing a degree requires several years, any local
shock that increases enrollment today would affect graduate supply only with a lag, reducing
concerns that contemporaneous shocks drive both the instrument and fund outcomes. The
IV estimates confirm the main results: plausibly exogenous adoption of a data technology
raises annual flows by 1.7% and increases expense ratio. These effects are not driven by large
financial districts such as Boston, Chicago, New York, Los Angeles, Philadelphia, or San
Francisco (Christoffersen and Sarkissian, 2009).

Second, I exploit variation in the information that funds can extract from web traffic
data, which is plausibly unrelated to fund flows. Specifically, I use the public release of
TensorFlow, a widely used open-source machine learning (ML) library in November 2015.4
TensorFlow release improves the precision of prediction models in settings with large data
availability. For example, Uber and Airbnb integrated TensorFlow to develop their ML
algorithms for rider-driver matching and pricing models, among other things. Intuitively, if
the widespread availability of ML allows to extract more informative signals from data, the
impact of data technology adoption should intensify after TensorFlow’s release. Consistent
with this conjecture, the impact of data technologies is about 30% larger post-release. To
tighten identification and validate this mechanism, I exploit cross-sectional heterogeneity
in data availability prior to the release of TensorFlow. I construct two proxies for the size
of each fund’s dataset at the release date: (i) the number of months between adoption and
November 2015, and (ii) the number of distinct data technologies installed. These measures
capture the amount of data available to a fund when TensorFlow is released (i.e., (i) proxy
for the time series of customer data collected up to TensorFlow’s release, and (ii) proxy for
the cross-sectional size of the dataset). Using a difference-in-differences specification with (i)

4For reference on the release, see: wired.com/[. . . ]/google-open-sources-its-artificial-intelligence-engine.

4

https://www.wired.com/2015/11/google-open-sources-its-artificial-intelligence-engine/


and (ii) as continuous treatment intensity, I find that funds with larger datasets benefit more
from TensorFlow’s release. Importantly, these results do not require that all funds actively
use ML to analyze customer data; this setting is similar to an intent-to-treat (ITT) design.

I next examine how do funds benefit from data. Managers gain from data primarily
through two channels: by targeting existing products more effectively, and by differentiating
their product offerings to cater to investor demand. Within existing funds, access to customers’
data improves marketing and sales to prospective clients (Roussanov et al., 2020; Chen et al.,
2022). To test this mechanism, I compare active and passive funds. Passive funds have little
discretion in portfolio holdings, which limits their ability to differentiate through product
design. If results were originating solely from product differentiation, I should observe
no effect on passive funds. Instead, I find similar effects across active and passive funds,
consistent with a targeting mechanism. To provide more direct evidence for this, I use data
from SEC N-SAR filings to show that adopting funds increase in-house sales and marketing
expenditures, and reallocate 12b-1 payments away from external broker-dealers toward
their own captive retail sales force. Fund prospectuses also become easier to read and more
directly oriented toward retail investors. These changes suggest that funds use data to better
target investors rather than to persuade or obfuscate (Mullainathan et al., 2008). I find no
significant change in product differentiation within fund, suggesting that the main effect on
existing funds stems from cosmetic changes.

At the fund-family level, the product differentiation mechanism plays a complementary
role (Massa, 2003; Bonelli et al., 2024; Loseto and Mainardi, 2023). Fund families that adopt
data technologies are better able to anticipate demand for new themes and adjust their
product menus accordingly. They launch more new funds than non-adopters, and those
funds focus more on themes that attract retail interest, such as ESG, artificial intelligence,
and cybersecurity (Ben-David, Franzoni, Kim and Moussawi, 2022).

I consider several alternative explanations for my findings. One rationale behind the
results might be that funds adoption of new technologies correlates with a superior ability
to generate performance. Although I control for past performance across all specifications
and the results on retail share classes (with no effect on institutional share classes within
fund) are inconsistent with this hypothesis, I formally test and reject this conjecture using
different measures of risk-adjusted performance. Another plausible explanation is that
fund managers are not learning about investor preferences but rather persuading them. For
instance, adoption could coincide with a rebranding of the fund. I show that this explanation
is unlikely in two ways. First, suppose the results reflected funds’ rebranding. In that case,
they should also hold for other website plugins that are unrelated to data collection, as it
is likely that websites rebranding update several plugins simultaneously. However, I find
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no results using placebo technologies that are not used to collect web traffic data. Second,
after adopting data technologies, fund prospectuses become more readable and transparent,
inconsistent with obfuscation or persuasion motives (Mullainathan et al., 2008; Ellison and
Ellison, 2009; deHaan et al., 2021).

Overall, my findings show that the impact of new technologies in the asset management
industry extends beyond asset allocation. By learning about investors rather than securities,
managers earn rents by bettermatching products to investor demand rather than bydelivering
alpha. Greater access to investors’ data affect incentives to acquire information and generate
performance, with potential consequences for financial markets. Moreover, managers retain
all the monetary gains from data. Understanding the origin of the additional capital to the
industry is important to assessing whether new technologies are net beneficial. For example,
if these flows come from shifting capital from passive investments to thematic funds, the
welfare implications may be ambiguous. More broadly, identifying if similar mechanisms
operate in other services, product markets, or industries is key to understanding the broad
economic role of data. Whether data grow the pie or redistribute existing rents is a central
question for the new data economy.

Related Literature. This paper contributes to three main strands of literature. First, it
adds to the growing literature on the role of new technologies in finance (Abis and Veldkamp,
2023). Existing research studies how technology affects financial forecasting (e.g., Chi,
Hwang and Zheng, 2024; Coleman et al., 2022; Dessaint, Foucault and Frésard (2024); van
Binsbergen, Han and Lopez-Lira, 2022), stock market quality (e.g., Martin and Nagel, 2022;
Farboodi and Veldkamp, 2020; Dugast and Foucault, 2024), households (e.g., Mihet, 2022;
Rossi and Utkus, 2024; D’Acunto and Rossi, 2023) and capital allocation (Abis, 2022; Bonelli,
2024; Birru et al., 2024; Bonelli and Foucault, 2024; Sheng et al., 2025). While most of this
evidence focuses on how technology influences asset allocation, I show that it also directly
affects fund managers’ ability to attract and retain capital. In doing so, this paper highlights
a direct link between technological innovation and the equilibrium allocation of capital.

Second, the paper contributes to the literature on the industrial organization of the asset
management industry.5 Hortaçsu and Syverson (2004) show that investors’ search costs are
central to explaining why homogeneous S&P500 index funds charge different fees. When
investors face search frictions, they choose from a limited subset of available products rather
than the best option overall, generating price dispersion even in homogeneous markets.
Roussanov, Ruan and Wei (2020) highlight the importance of mutual funds’ marketing for

5Gârleanu and Pedersen (2018) link the efficiency of asset prices to the efficiency of the market for asset
management services. These findings bridge the (in)efficiencies in both markets and emphasize the importance
of the asset management industry for asset prices.
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attracting investors’ capital6 (Reuter and Zitzewitz, 2006; Kostovetsky and Manconi, 2018;
Chen et al., 2022). More recently, Obizhaeva (2024) finds that ETFs attract more flows
when advertising through online search engines. According to this strand of literature,
technological improvement will reduce search frictions and increase competition among
managers. This paper shows a more nuanced role of technology: when information
advantages accrue to managers instead of investors, fees rise rather than falling. A related
line of literature studies asset managers’ strategic product market choices (e.g., Massa, 2003;
Betermier et al., 2023; Cvitanić and Hugonnier, 2022; Kostovetsky and Warner, 2020; Bonelli,
Buyalskaya and Yao, 2024; Loseto and Mainardi, 2023). In these works, fund families change
their product menus to reduce investors’ switching costs or to differentiate themselves. To
the best of my knowledge, this paper is the first to investigate whether asset managers collect
investors’ information to better meet their demand. In traditional rational models (e.g., Berk
and Green, 2004; Berk and van Binsbergen, 2015), learning is one-sided: investors learn about
managers’ skill by observing their performance over time. This paper complements these
frameworks by showing that learning also operates in the opposite direction —managers
learn from investors’ data. In that sense, this work bridges the literature on asset management
to studies on customer capital (Gourio and Rudanko, 2014; Belo et al., 2014), defined as
the stock of a firm’s customer relationship. Roldan-Blanco and Gilbukh (2021) relate firms’
customer capital to markup dynamics7, while He, Mostrom and Sufi (2024) show that
publicly listed U.S. firms invest more than 4% of their revenue on sales and marketing to
build customer capital. This paper shows that advances in data technologies strengthen
asset management companies’ ability to build and monetize from customer capital. The
same logic may apply to other industries as well.

Third, this paper contributes to the literature on the role of data in the economy (e.g.,
Jones and Tonetti, 2020; Cong et al., 2021; Brynjolfsson and McElheran, 2016; Goldfarb
and Tucker, 2019). Chung and Veldkamp (2024) review this growing literature in detail.
The central insight is that the increasing amount of digitized information is valuable for
economic agents, and a no-data equilibrium differs from a data economy (Farboodi and
Veldkamp, 2023). While data are not conceptually distinct from information, what differs is
the enormous number of data points available and the sources from which agents extract
that information. A crucial question in understanding the role of data in the economy is
whether it increases utilitarian welfare or redistributes rents (Baley and Veldkamp, 2025). I
show that funds generate more value added (Berk and van Binsbergen, 2015) after adopting

6This literature intersects with research studying what drives investors’ flows to asset managers and their
effect on asset prices (e.g., Dou, Kogan and Wu, 2024). See Christoffersen et al. (2014) for a survey.

7Complementary works on this growing literature include Morlacco and Zeke (2021), Baker et al. (2023),
and Arellano-Bover et al. (2025).
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data technologies, and that this additional value originates from retail investors rather than
institutional investors. This distinction is crucial for understanding where the surplus from
data arises and who captures it. Under strict neoclassical assumptions, the adoption of data
technologies is associated with larger utilitarian welfare, as it improves matching between
investors and managers. However, if these assumptions do not hold, for example, because
of households’ biases, data may redistribute rents from retail investors to fund managers.
Overall, I show that valuable data for asset managers are not only datasets for identifying
investment opportunities (Farboodi et al., 2021, 2024; Bonelli and Foucault, 2024), but also
customers’ data.

2 Theoretical Framework

In this section, I describe the main hypotheses regarding the role of data analytics
technology for asset managers’ ability to attract capital. I summarize the main intuition here
and develop a simple economic framework in Appendix A. The theoretical framework builds
on Berk and Green (2004) and Berk and van Binsbergen (2015). In these traditional models of
competitive markets for asset management services, investors learn about fund managers’
skills by observing their risk-adjusted performance over time. However, the learning is
one-sided. Whether managers do or do not have information about investor preferences,
tastes, or values is irrelevant for the equilibrium of the industry.

I maintain a competitive rational framework and extend it to a setting where managers
compete not only on risk-adjusted performance, but also on how well they understand
customer preferences. I will use the terms investor and customer interchangeably. The goal is
to understand whether information about investors’ preferences plays a role in the allocation
of capital to asset managers.

As in Berk and van Binsbergen (2015), investors allocate wealth across a continuum
of funds based on risk and return. In my setting, investors may also have non-pecuniary
preferences. These attributes might include a preference for holding green assets (e.g.,
warm-glow preferences, Hartzmark and Sussman, 2019; Pástor, Stambaugh and Taylor, 2022),
or a specific taste over the fund’s communication style and frequency8 (e.g., daily push
notifications, monthly emails, etc.). The precise mix of such preferences evolves slowly over
time. Investors know their own tastes, but fund managers do not observe them directly.
Instead, managers infer preferences from observing noisy signals.

8This interpretation is reminiscent of the effect of “trust” in Gennaioli, Shleifer and Vishny (2015). Previtero
and Xing (2025) also model non-pecuniary preferences in the mutual fund sector. They study the value added
by financial advisors in a competitive market.
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The key friction is that investors’ non-pecuniary preferences are latent, and assetmanagers
differ in how precisely they can learn them. Some managers have better data, better survey
infrastructure, or more sophisticated analytics. Others operate with more noisy information.
This asymmetry creates variation in how well different managers learn about shifting
investors’ demand. Fund managers accumulate information over time, building their stock
of knowledge. This stock of knowledge corresponds to “data” in traditional models of the
data economy (Farboodi and Veldkamp, 2023; Abis and Veldkamp, 2023).

Managers who know more about investors’ taste can better anticipate shifts in demand
and tailor their offering accordingly. For example, if younger investors increasingly prefer
digital communication, an informed manager could introduce mobile apps or chatbots early
and attract more capital than competitors with noisier signals.9 This mechanism leads to the
first hypothesis I test:

Hypothesis 1. (Flows and Data Technologies)
Asset managers collecting more information about investor preferences receive larger fund flows.

The additional flows are the result of a better match between funds and investors, beyond
the performance they deliver. This logic extends to other product preferences. For instance,
if investors’ demand for AI or green assets intensifies, more informed managers can forecast
the shift and adjust their product offerings accordingly. As a consequence, they can attract
capital even without superior performance (Ben-David, Franzoni, Kim and Moussawi, 2022).
Less informed competitors may miss the trend and lose assets to funds that offer better
alignment with investors’ tastes.

The theoretical framework also predicts differences in the equilibrium fund fees. Asset
managers who better align their products with investors’ taste can charge higher fees. These
managers are harder to replace for investors, since outside options offer a worse fit. They are
willing to pay more, even if these products might deliver lower performance. Returning to
the example above, a fund that caters to green preferences may be preferable to a generic
alternative even if it generates lower performance. Thus, my second testable hypothesis
concerns fees, i.e., expense ratio:

Hypothesis 2. (Expense Ratio and Data Technologies)
Funds with more information about investor preferences charge higher fees compared to competitors.

9In a recent interview, Arpit Sarin, Vice President of Digital at Regions Bank, mentioned “understanding
how GenZ and TikTok investors pick their investment” and “how much do they trust financial advisors”
as urgent questions for which an asset manager “would need a lot of data to get an answer” (aiandbank-
ing.libsyn.com/[. . . ]/ai-driven-digital-transformation-in-banking).
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When a fund’s product offering aligns more closely with investor preferences, those
consumers are willing to pay more for the product. Selling more specialized products allows
funds to charge higher fees in equilibrium. This prediction is reminiscent of common features
in IO models (e.g., Salop, 1979; Lancaster, 1966; Pellegrino, 2024 among others).

In sum, this framework emphasizes that information about investors’ preferences, tastes,
or values might matter for the equilibrium of the asset management industry. Once we
introduce a role for non-pecuniary preferences in investors’ utility, information about
customers’ demand allows managers to attract more assets and charge higher fees. This
holds even in competitive and rational markets. In the following sections, I test these and
other ancillary predictions using data technologies used to track customer behavior as a
proxy for the willingness to analyze investors’ data.

3 Data and Measurement

The data I use in this paper come from multiple sources. This section describes the
datasets and summarizes the main cleaning steps; full details are in Appendix B. First, I
introduce the main sample of US mutual funds and ETFs. Second, I complement these data
with information from N-SAR regulatory filings, mutual fund prospectuses, and portfolio
holdings. Finally, I describe website technology data and document a series of facts regarding
the adoption of data technologies in asset management.

3.1 Data

My main data sources are the CRSP Survivorship Bias-Free Mutual Funds dataset,
Morningstar Direct, and FactSet Funds. I merge CRSP with FactSet by CUSIP, which
identifies unique financial securities and is not re-assigned over time. Then, I merge with
Morningstar using CUSIP and ticker. I follow Berk and van Binsbergen (2015) as closely as
possible in cleaning funds’ data. I outline the main steps here and provide thorough details
in Appendices B.1 to B.4.

The sample consists of US equity mutual funds and ETFs. I adjust all AUM numbers
by inflation (in January 2000 dollars) and remove observations prior to a fund’s first offer
date to mitigate incubation bias concerns (Evans, 2010). I exclude funds with less than two
years in the sample and those whose (inflation-adjusted) AUM never exceeds $5 million
(Kacperczyk, Sialm and Zheng, 2008). Funds data are available at the share class level; that
is, different share classes belonging to the same fund are reported separately. Therefore, for
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each month, I aggregate share classes at the fund level by summing the AUM of all subclasses
and weighting all other variables (e.g., fees, returns) by lagged AUM. I identify fund families
following Dannhauser and Spilker (2023), and estimate fund alphas using 24-month rolling
regressions on monthly returns. The sample is from March 1993 to December 2023. The
beginning date is March 1993 because earlier AUM data are limited (Pástor, Stambaugh
and Taylor, 2015). The final sample comprises 8,125 funds (7,836 equity mutual funds and
289 ETFs), with 947,079 fund-month observations. My sample is somewhat larger than
comparable samples of US mutual funds in the literature. The reason is twofold. First,
incorporating FactSet yields amore comprehensivemergewith CRSP than usingMorningstar
alone. Second, I do not remove index funds, institutional share classes, sector funds, or funds
that allocate less than 80% of their portfolio to stocks.

Following prior literature (e.g., Lou, 2012), I compute the investment flow to fund 8 in
month C as

�;>F8 ,C =
�*"8 ,C − �*"8 ,C−1 · (1 + A8 ,C) −"'�8 ,C

�*"8 ,C−1
× 100, (1)

where �*"8 ,C is the assets under management (total net assets) of fund 8 in month C, A8 ,C
is the monthly (gross) return, and "'�8 ,C is the increase in AUM due to fund’s mergers
happening in month C. Accounting for "'�8 ,C , I avoid misattributing funds’ mergers as
inflows. I winsorize all variables at the 1% and 99% levels.

Table 1 about here

Table 1 presents summary statistics for all fund-month observations in my sample. The
distribution of AUM is rightly skewed, as is common in the institutional investors’ literature.
The average expense ratio is 1.12%, with 0.28 percentage points attributable to marketing
and distribution expenses (12b-1 fees). On average, funds in my sample have 0.12% negative
flows each month and negative net abnormal returns (after fees), consistent with evidence
for the U.S.

I complement the main funds’ data with three additional sources: N-SAR filings, mutual
fund prospectuses, and portfolio holdings.

N-SAR filings. Until June 2018, investment management companies filed semi-annual
N-SAR Forms with the SEC.10 Each Form N-SAR reported fund-level information, but was
submitted by the fund complex (i.e., the SEC registrant). A fund complex may include
multiple funds. I link all fundswithin a fund complex to themainCRSP–Morningstar–FactSet
dataset (Appendix B.7 provides a detailed description of the steps). N-SAR filings contain

10Starting in June 2018, the SEC replaced N-SAR with Forms N-CEN and N-PORT.
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information not available in traditional datasets, including redemption fees, marketing
expenses, captive retail sales forces, 12b-1 fee rebates, and separate reporting of sales (inflows)
and redemptions (outflows).11

Fund Prospectuses. Mutual fund prospectuses are from the SEC’s EDGAR (Forms
485APOS and 485BPOS). I closely follow Abis (2022) andMullally and Rossi (2025) to retrieve
prospectuses from EDGAR. The sample period for the prospectus data spans from 2006
to 2023. This sample begins in 2006 because in that year, the SEC started requiring series
IDs (fund identifiers) and class IDs (share class identifiers) in their filings. These identifiers
enable a direct link to the main sample. For each filing, I parse the text, strip HTML tags,
and extract the Principal Investment Strategy (PIS) section (Abis, 2022; Abis and Lines, 2024),
see Appendix B.8 for details on the procedure.

Portfolio Holdings. Finally, mutual fund portfolio holdings are from Thomson Reuters
(s12). I use quarterly equity holdings from 2004Q2 to 2023Q4. The holdings’ sample starts in
2004Q2 because the SEC began requiring quarterly holdings disclosure only in May 2004
(Rule 30b1-5).

3.2 Data Technologies

I identify assetmanagers’ willingness to collect data using information from their websites.
In particular, I rely on tags contained in the website’s source code to detect whether

managers adopt plugins designed to analyze web traffic data. Such plugins are widely used
in several industries to track customer behavior and preferences. For example, Amazon and
Nike, in their cookie policy, mention analyzing web traffic data to “improve their products”
(Amazon, 2025) and to “understand personal preferences” (Nike, 2025).

Asset managers are increasingly using these plugins to learn about investor behavior and
adapt their products. Vanguard, for example, reports usingAdobeAnalytics to identifywhich
content is more likely to drive engagement for specific visitors, allowing to target investors
more effectively. Similarly, Reliance Mutual Fund tracks web traffic to analyze investors’
behavior and test alternative website layouts. This practice is typically called A/B testing,
and resembles randomized control trials (RCTs) on website pages to run personalization
experiments.12 These plugins provide a natural setting for studying questions about the role
of customer data in the asset management industry.

11For other papers using information from N-SAR filings see, among others, Edelen (1999); Chernenko and
Sunderam (2020); Evans, Gomez and Zambrana (2024).

12NIMF Mutual Funds Chief Digital Officer, Arpanarghya Saha, notes that “we need to make our products
and services easy to understand —similar to approaches taken at more traditional e-commerce companies.”
The firm highlights data technologies as one of its major recent priorities (business.adobe.com/[. . . ]/mutual-
fund-case-study).

12

https://business.adobe.com/au/customer-success-stories/nippon-india-mutual-fund-case-study
https://business.adobe.com/au/customer-success-stories/nippon-india-mutual-fund-case-study


All websites are made by different tools that work as building blocks. These building
blocks are typically referred to as technologies. For instance, installingGoogleMaps technology
allows a website to display an interactive map on its pages (e.g., to show store locations).
Other technologies, such as Adobe Analytics, are designed to collect and analyze web visitors’
data. I obtain information on websites’ technology adoption from BuiltWith, an alternative
data provider. BuiltWith analyzes websites’ source code and searches for specific patterns,
such as HTML tags, that identify the presence of technologies.13 They continuously crawl
websites to capture installed technologies, starting January 2000. As a result, I observe the
exact month a website installs (and eventually removes) a given technology. Henceforth,
I define data technologies as those aimed at collecting and analyzing customer information,
such as Google Analytics or Adobe Analytics.

I merge BuiltWith datawith fundwebsites in the CRSP-Morningstar-FactSet sample. Fund
website information is primarily from CRSP. However, CRSP starts consistently reporting
each fund’s website only in January 2008. To extend coverage, I hand-collect all website
registration dates from whois.com and back-fill each fund’s website from its registration date
to December 2007.14

Figure 1 and Table 2 about here

Figure 1 plots the adoption of data technologies among US funds. The blue area shows
the total number of funds with at least one data technology on their website in a given
month. The red line reports the share of funds adopting data technologies. A few funds
began adopting data technologies as early as 2006. However, the significant surge occurred
in 2012, when the adoption rose from 15% to 30%. This surge coincides with a major release
of Google Analytics, which remains the leading provider in the space. The adoption of data
technologies in asset management continued to grow after 2012 and stabilized around 2019.
As of December 2023, approximately 70% of the funds in the sample (over 2,000 unique
funds) had adopted at least one data technology.

In Table 2 I list the leading data technologies, by the end-of-sample. Google Analytics
accounts for the lion’s share of adoption, with around 60% of funds installing it.15 Other
leading technologies include Omniture Test & Target, which enables A/B testing16, as well

13See also Charoenwong et al. (2024) for another usage of BuiltWith’s data in finance.
14This procedure marginally increases the number of technologies’ adoptions, as most data technologies

spread after 2011 (see Figure 1). However, this cleaning step ensures I don’t misclassify funds as non-adopters
before January 2008.

15Appendix E.2 shows that all the main results are not driven solely by Google Analytics (Appendix Table
E.9).

16A/B tests are tools similar to RCTs, which are increasingly used in several industries. They allow to randomly
split the web traffic audience and study several alternatives of product bundles, pricing, or descriptions.
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as LiveRamp, which integrates big data across platforms.
All technologies in Table 2 are designed to generate signals fromweb visitors’ preferences.

These features are not limited to themost commonly used data technologies by assetmanagers
in my sample. Appendix Figure E.2 shows the word cloud built from descriptions of all data
technologies installed by asset managers. Common terms include “tracking”, “insight”, and
“analytics”. Overall, these technologies suggest that asset managers actively track customers
to inform their decisions. The remainder of the paper examines the implications of these
technologies for adopters and for the equilibrium of the asset management industry.

A concern with using this proxy is that adoption might be decided by hosting providers,
rather than the funds themselves. For instance, AWS Web Hosting may pre-install the same
set of technologies by default across all the websites it hosts. If that happens, then the actual
adoption rates would not reflect the choices made by the funds. To ensure this is not the case,
I collect data on the hosting provider used by all websites in my sample. For each group
of websites hosted by a hosting provider in a given month, I compute the average cosine
similarity in technology adoption. The cosine similarity measures the overlap between two
vectors. Intuitively, if two websites using the same hosting provider in a given month share
the same set of technologies, the cosine similarity equals one. When the cosine similarity is
lower than one, the websites installed different technologies within hosting-month group.

Appendix Figure E.1 presents the distribution of cosine similarities within each hosting-
month group. The mean similarity is 0.29, with a median of 0.27, both of which are far from
one. Websites sharing the same hosting provider install markedly different technologies.17
Thus, it is unlikely that website technology adoption is determined by the hosting services.

4 Main Findings

In this section, I examine how the adoption of data technologies affects asset managers.
Guided by the framework in Section 2, I first study the impact of data technology on fund
flows and fees (expense ratio). I conclude this section with a series of robustness tests in
support of the results.

17For comparison, Panel B of Appendix Figure E.1 show results from a simulation in which adoption is
random within groups. The cosine similarity in the actual data is lower than what would be expected under
random assignment.
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4.1 Funds Flows and Data Technologies

The first main hypothesis (Hypothesis 1, Section 2) predicts that funds with more data
about investor preferences attract more flows. I test this prediction by studying whether
funds receive more capital after adopting a data analytics technology on their website. For
each fund 8 and month C, I define a dummy variable Data8 ,C equal to one if the fund has at
least one data technology in place. Then, I estimate the following specification:

�;>F8 ,C+1 = 
8 + �C + � Data8 ,C + #′^ 8 ,C + �8 ,C+1, (2)

where �;>F8 ,C+1 is the fund 8’s flow between months C and C + 1, defined as in equation (1).

8 and �C are fund and time fixed effects, respectively. I also include a specification with fund
category×time fixed effects, to mitigate concerns about category-specific shocks. ^ 8 ,C is a set
of control variables, including fund size (;>6�*"), performance, (;>6) age, turnover, and
12b-1 fees.18 I measure performance using the CAPM alpha, as previous research shows it is
the closest asset pricing model to what mutual fund investors use (Berk and van Binsbergen,
2016; Barber, Huang and Odean, 2016). Using alternative measures, such as Fama–French
3-factors, 5-factors, or alpha with respect to all available Vanguard index funds (Berk and
van Binsbergen, 2015) yields the same conclusions (see Appendix E).

The coefficient of interest is �. Importantly, including fund and time fixed effects implies
that identification comes from variation in flows before versus after data-adoption, relative
to the same change for funds without data technology. I account for the staggered treatment
design in my difference-in-differences estimations (Callaway and Sant’Anna, 2021; Gardner
et al., 2024). I cluster all standard errors at the fund and month levels.

Table 3 about here

Table 3 shows that data adoption leads to larger fund flows. The first row reports the
coefficient of interest, �. Columns (1)–(2) present baseline difference-in-differences (OLS)
results, while columns (3)–(4) show estimates corrected by staggered difference-in-differences
concerns (following Gardner et al., 2024). Columns (2) and (4) add fund category×time fixed
effects to absorb category-specific shocks. I omit coefficients on control variables for brevity.19

18Expense ratio and lagged flows are common controls in fund flows regressions. Yet, both variables
are affected by the treatment. As a consequence, including these variables as controls could introduce
post-treatment bias. For completeness, I report results with these additional covariates in Appendix Table E.4.
Results are qualitatively unchanged.

19All controls enter with the expected sign across all specifications, e.g., positive flow-performance sensitivity
(Chevalier and Ellison, 1997; Sirri and Tufano, 1998; Pástor et al., 2015; Franzoni and Schmalz, 2017). For
comparison with previous works, Appendix Table E.1 shows detailed results.
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Across all specifications, funds that adopt a data technology on their website experience
significantly larger inflows after adoption. The coefficients imply about 0.13% (1.56%)
larger monthly (yearly) inflows for data-driven funds after adoption. These effects are
economically significant. For example, the effect is comparable to the flow-performance
sensitivity (Chevalier and Ellison, 1997) associated with a fund generating a 1.75% annual
alpha (84Cℎ percentile in my sample).

I report results for both baseline difference-in-differences and estimators addressing
heterogeneous treatment effects or other concerns in staggered designs (de Chaisemartin and
D’Haultfœuille, 2020; Goodman-Bacon, 2021). The results are similar across all approaches.
This is not by chance. In my setting, the total weight attached to “forbidden comparisons”
(Goodman-Bacon, 2021) is less than 8%. This relatively low weight arises because the main
sample begins several months before the first adoption (treatment), which allows precise
estimation of group effects (Gardner, 2021; Gardner et al., 2024). A similar logic applies to
period (time) effects. These results remain unaffected by controlling for funds’ Morningstar
Rating (Ben-David, Li, Rossi and Song, 2022), using alternative sets of control variables,
or removing funds that adopt only Google Analytics. In Section 4.4, I thoroughly discuss
robustness tests.

In Appendix E.2, I examine the parallel trends assumption implicitly behind the identifi-
cation in equation (2), and covariates balance tests. While the parallel trend assumption is, by
definition, untestable, I find no evidence of statistically significant differences in pre-adoption
trends between treated and controls (Table E.2). I also cannot reject the hypothesis of
covariates balance before adoption at conventional confidence levels (Table E.3, Figure E.3).

Figure 2 shows the dynamics of the effect on flows. I interact the coefficient of interest
with event-time dummies in a stacked sample, following Gormley and Matsa (2011). Then,
I report monthly event-time coefficients up to one year before/after adoption, with 95%
confidence intervals. The estimates show no significant pre-trends before adoption. The
treatment effect is persistently positive only after three months since adoption.

Figure 2 about here

Moreover, since multiple funds in a given fund family may share the same website (on
average, a family has 1.30 websites), a potential concern is that � could reflect within-family
effects. I address this by showing robustness to: (i) clustering standard errors at the fund
family and month levels, (ii) restricting only to families with one website per fund, and (iii)
aggregating observations within family-month.
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The fund flows discussed above (equation (1)) represent net flows. This measure captures
the difference between inflows and outflows for fund 8 during month C. To better understand
the impact of data technology on fund flows, I investigate whether the results stem from
larger inflows or smaller outflows. I use data from the SEC’s N-SAR filings, which required
funds to report their monthly inflows and outflows separately.20 The N-SAR sample spans
from January 2006 to June 2018, after which the SEC replaced N-SAR with N-CEN and
N-PORT filings. Table 4 shows the results for fund inflows and outflows, separately.

Table 4 about here

Columns (1) and (2) report estimates on inflows, while columns (3) and (4) on outflows.
The table shows that the effect of data technology on fund flows arises through larger inflows.
The first two columns resonate with previous results: funds that install data technology
attract significantly more inflows after adoption. By contrast, the effect on outflows is
statistically indistinguishable from zero. Therefore, after adoption, funds receive larger
inflows, with no significant difference in outflows. This result suggests that the effect operates
mainly on the extensive margin rather than the intensive margin (i.e., funds attracting new
investors). This is important because it points to new technologies allowing asset managers
to collect more (new) capital from investors.

Asset managers ultimately care about scale –that is, the total AUM. While data adoption
attracts more flows, there might be some conditions under which this does not translate
into larger scale. The increase in flows may be small in dollar terms, short-lived, or offset by
weak performance.21 To directly verify that adoption increases fund size, I estimate the same
specification using the (;>6) AUM as dependent variable –excluding lagged size from the
control variables set to avoid post-treatment bias (Roberts andWhited, 2013). Appendix Table
E.5 report the results. In line with the results on flows, funds that adopt data technologies
manage about 12% larger AUM after adoption.

Taken together, these results support the view that data technologies help asset managers
attract more capital. Funds that adopt data technology are associated with larger flows after
adoption. This result stems from more inflows, without affecting outflows.

4.2 Increase in Expense Ratio

The second main hypothesis (Hypothesis 2, Section 2) predicts that funds with more
customer data charge higher expense ratios in equilibrium. This happens because fund

20I refer to Appendix B.7 for further details on N-SAR filings data.
21Later in the paper, I show that none of these cases is supported empirically.
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managers align better with investor preferences, beyond the alpha the fund delivers to them.
For example, if these technologies allow managers to offer funds closer to investors’ taste or
values, they can elicit a higher willingness-to-pay and increase fees.

Table 5 about here

I study this hypothesis with a similar specification to equation (2), where the expense
ratio (in %) is on the left-hand side. Table 5 reports the results. The estimates imply that
funds using data technology increase their fees by approximately 2 to 4 basis points after
adoption (first row). Results are similar including category×time fixed effects, and/or other
control variables such as the Morningstar rating. Further, the increase in expense ratio
is independent of changes in marketing and distribution fees, as I do not find significant
changes in 12b-1 fees.

A legitimate concern might be that this increase in fees reflects a mere composition effect
within fund. The expense ratio of funds with both retail and institutional share classes is the
AUM-weighted average expense ratio across share classes. Because retail share classes are
more expensive, a fund’s expense ratio could rise mechanically if retail share classes attract
more capital than institutional ones. I rule out this explanation, running the specification for
a sample of funds with only retail share classes (Appendix Table E.14).

Theory of the industrial organization of asset management predicts that new technologies
will reduce fees by lowering investors’ search costs (e.g., Hortaçsu and Syverson, 2004; Gâr-
leanu and Pedersen, 2018; Roussanov et al., 2020 among others). Technological development
makes it easier for investors to find and compare asset managers. With easier search, investors
contact more managers, identify better funds, and drive the market toward the first-best
with no price dispersion and fees equal to marginal cost.22 Thus, these models imply that
technological innovations will tend to reduce the cost of financial services. The prediction
from Section 2 is markedly different and offers a different perspective on the role of new
technologies for the equilibrium of the asset management industry. This difference arises
because the data technologies I study in this paper facilitate information acquisition for asset
managers, not customers. When managers —not investors— benefit from technological
innovation, fees rise in equilibrium rather than fall.23

22For example, from Roussanov et al. (2020): “With the advancement in information technology and the
emergence of services enabling more transparent comparison between funds, we would expect the search
frictions to decline over time.”

23Relatedly, Buchak, Chau and Jørring (2023) document that FinTech lending raises borrowing costs in the
U.S. mortgage market.
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4.3 Endogeneity Concerns

The adoption of data technology may be correlated with unobservable factors. For
example, fund managers may install data analytics tools just before an expected surge in
product demand. I address this concern using two sources of variation that are plausibly
exogenous to fund flows and fees. First, I instrument adoption with the local supply of data
analytics graduates. Second, I exploit the release of TensorFlow, a widely used machine
learning library that improved the precision of signals managers can extract from existing
datasets.

4.3.1 Instrumental Variable: Data Analytics Graduates

It is well known that the local environment plays a role in the diffusion of technology.
Regions with specialized human capital foster adoption through local complementarities
and knowledge spillovers. For example, Moretti (2004) and Gennaioli et al. (2013) show that
local human capital spurs technology adoption by firms. On a similar note, Conley and Udry
(2010) document that local learning externalities accelerate adoption even in developing
economies.

The local environment also plays a significant role in asset management. Christoffersen
and Sarkissian (2009) show that funds in large cities outperform becausemanagers in financial
districts interact more frequently and share investment ideas (Cujean, 2020). I test whether
this intuition extends to technology adoption in asset management. Appendix Table E.15
shows that funds are more likely to adopt when nearby funds do. To separate geographical
effects from peer effects, I regress a fund’s adoption decision on the (lagged) share of adopters
in its style and in its geographic location. If adoption were driven by within-style peers, the
lagged share of adopters in a fund’s style would predict adoption. Instead, only the share
of adopters in the same zip code, city, or state matters, consistent with a local environment
effect. The magnitude of this local effect declines as the geographic unit expands —from zip
code to city to state— as in agglomeration economies with technology diffusion (Rosenthal
and Strange, 2004).

When I allow endogenous adoption of a data technology in my economic framework, the
prediction echoes intuition from the literature on technology diffusion: Local concentration
of experts in data analytics facilitates diffusion by lowering the marginal cost of adoption.
Proximity to specialized human capital facilitates learning and access to technology.24

24Hoberg and Neretina (2024) apply a similar intuition from agglomeration economics to instrument for a
firm’s participation in trade associations. They use the likelihood that a firm learns about a trade association
via social connections.
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Guided by this idea, I construct an instrument based on the local supply of data analytics
graduates. Specifically, I use the number of university graduates in data analytics-related
fields from universities near a fund’s headquarter. I obtain the annual number of bachelor’s,
master’s, and Ph.D. degrees awarded in data analytics, statistics, and computer science by
U.S. universities from the Integrated Postsecondary Education Data System (IPEDS).25 For
each year, I aggregate the total number of graduates within a U.S. commuting zone (CBSA)
and scale by the commuting zone’s population. This variable proxies for local concentration
of experts that can implement data analysis.

Because the number of graduates varies at the annual frequency, I aggregate flows
at the fund-year level and measure expense ratios annually. This avoids mismatches in
frequency that could create aggregation bias or mismeasurement (Ghysels et al., 2006). Then,
I instrument a fund’s adoption choice with the local supply of data analytics graduates.

The exclusion restriction requires that local data analytics graduates affect fund outcomes
only through adoption. This assumption is plausible because fund fixed effects absorb all
time-invariant differences across funds, including location choice. A reasonable concern
is that local shocks could simultaneously increase graduate supply and investor demand.
However, this concern is mitigated by the timing of graduation: completing a degree requires
at least three years, so any local shock that raises enrollment in university programs today
would affect graduate supply only with a delay, whereas shocks to investor demand would
likely materialize faster. I further address this point by measuring graduates at the CBSA
level and scaling the instrument by the CBSA’s population, so that it captures supply rather
than market size. Moreover, in Appendix Tables E.16 and E.17, I report robustness including
CBSA×time fixed effects to further reduce concerns about local shocks. Table 6 shows the
results.

Table 6 about here

I report first-stage results in columns (5) and (6). The first stage confirms that funds
in areas with more data analytics graduates are more likely to adopt. An additional data
analytics graduate per 100 people predicts 1.1% higher probability of installing tools aimed
at tracking customers’ data. This effect is sizeable but plausible: a one-standard deviation
increase in local graduates (��+ = 0.60) raises adoption by 1.33% (0.60× 1.1%/0.495 = 1.33%)
relative to the mean adoption rate of 49.5%. For context, while not quantitatively comparable
in outcome, Moretti (2010) documents large local externalities of human capital —one
additional skilled job generates roughly +2.5 jobs locally.

25See Appendix C for the detailed list of Core Instructional Programs (CIPs) in these fields.
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The second stage uses variation from local graduates to estimate the effect of adoption
on fund flows (columns (1)-(2)) and fees (columns (3)-(4)). The Kleibergen-Paap statistic to
test for weak instruments is around 20 across all specifications, above the threshold of 10 for
rejecting weak instruments (Stock and Yogo, 2005). The second stage results are consistent
with earlier evidence. Adoption of a data technology leads to a significant increase in fund
flows. At the same time, those funds charge higher expense ratios. On average, plausibly
exogenous adoption raises annual flows by 1.7%, (column (2)) and expense ratios by about 3
bps (column (4)). These magnitudes are close to the baseline results in Tables 3 and 5. Overall,
the IV estimates quantitatively and qualitatively confirm the main predictions, reducing
concerns that results purely reflect endogeneity in the adoption.

The results are not driven by big financial districts such as Boston, Chicago, New York,
Los Angeles, Philadelphia, or San Francisco. In Appendix Tables E.16 and E.17, I report
robustness results removing these financial centers as well as including CBSA×time fixed
effects.

4.3.2 Shock to Information Precision: Open Source Machine Learning

In this section, I use a different source of variation to further address endogeneity
concerns. I exploit the release of an open-source machine learning library, called TensorFlow,
in November 2015. TensorFlow’s public release provides a plausibly exogenous increase in
the precision of signals that managers can extract from a given dataset. TensorFlow reduces
the cost of training machine learning algorithms in settings where large amounts of data
are available. For example, Uber, which collects data through its app, used TensorFlow to
predict the probability of a successful customer-driver match.26

If machine learning raises prediction precision from a given dataset, the effect of data
technologies should be stronger after November 2015. To limit concerns that managers
adopted a data technology because of TensorFlow’s release, I exclude (i) funds that adopt
after November 2015 and (ii) funds that adopt within six months before the release.27 This
restriction limits endogeneity concerns in adoption: all treated funds in this sample had a
technology in place as of November 2015.

As a first step, I compare the effect of data technologies on flows before and after
TensorFlow’s release. I interact Data8 ,C with a dummy equal to one post-November 2015 and

26Several other large platforms such as Airbnb, Kakao Mobility, and Twitter started using TensorFlow soon
after its release to improve prediction systems (tensorflow.org/about/case-studies).

27Results are unchanged when extending the exclusion window to 12 months.
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zero otherwise (denoted P>BCC):

�;>F8 ,C+1 = 
8 + �C + �1 Data8 ,C + �2
(
Data8 ,C × P>BCC

)
+ #′^ 8 ,C + �8 ,C+1, (3)

where �2 captures the additional effect of installing a data technology after TensorFlow’s
release.

Table 7 about here

Columns (1) and (2) in Table 7 report the results. The first row shows estimates for the
baseline coefficient on the Data dummy. Consistent with earlier evidence, unconditionally,
funds adopting data technology attract significantly larger flows (�1 > 0). The second row
reports results for the coefficient of interest in this specification: �2. Consistent with machine
learning improving prediction precision, the effect of data technologies is about 30% higher
after TensorFlow’s release.

Next, I tighten identification exploiting cross sectional heterogeneity right before the
release of TensorFlow. I construct two continuous treatments that proxy for the amount of data
available to each fund as of November 2015. The first continuous treatment is the tenure of
adoption, i.e., the number of months between a fund’s first adoption of a data technology and
TensorFlow’s release. Intuitively, this proxies for the length of the time-series of data available
for training machine learning algorithms. The second continuous treatment is the number
of data analytics technologies installed on a fund’s website. The idea behind this proxy
is that funds with more data technologies can collect more customers’ characteristics and,
thus, have larger datasets. For example, Adobe Analytics collects demographic information
on web visitors, while Hotjar lets users observe heatmaps of customers’ interaction —i.e.,
detailed information on where users click. Then, I estimate:

�;>F8 ,C+1 = 
8 + �C + �1Data8 ,C + �2
(
Data8 ,C × P>BCC

)
+ �3

(
Data8 ,C × P>BCC × I8

)
+ #′^ 8 ,C + �8 ,C+1 , (4)

where I8 is either the tenure of adoption as of November 2015, or the number of technologies
installed (i.e., the continuous treatments introduced above). The coefficient of interest is the
interaction with the continuous treatment: �3. In both cases, I expect stronger post-release
effects for funds with larger I8 ; equivalently, �3 > 0.

Columns (3)-(4) and (5)-(6) in Table 7 report results using as continuous treatment
the tenure of technology adoption and the number of technologies installed, respectively.
The third row shows estimates for the coefficient on continuous treatments. Across all
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specifications, both continuous treatments confirm the conjecture that the additional effect
post-TensorFlow release is stronger for funds with (ex-ante) larger datasets.

Appendix Table E.19 shows that this specification is robust to excluding growth funds. A
concern may be that the release of TensorFlow could raise expectations about growth firms’
cash flows, or lower their discount rates, attracting flows to growth funds. For instance, if
tech firms benefit more from machine learning than other firms, investors may expect higher
future growth for those stocks. The estimates above already include fund category×month
fixed effects, which mitigate concerns that category-specific shocks drive the results. Yet, in
the Appendix I show that the results remain unchanged when I exclude growth funds.

4.4 Summary of Additional Robustness Results

The results above may still reflect variation other than the funds’ tracking of customers’
data. In Appendix E, I run a series of robustness tests to address this concern. I summarize
these tests here and report results in the Appendix.

First, Ben-David, Li, Rossi and Song (2022) shows that mutual fund investors rely on
simple labels, such as Morningstar ratings, when allocating capital. If data technology
adoption correlates with ratings, my results might be spuriously capturing those rating
changes. I address this concern controlling for Morningstar rating in Appendix Tables E.4
and E.6 (columns (3), (4), (7), and (8)). Results are quantitatively and qualitatively unchanged.
This may not appear surprising: Morningstar ratings are assigned based on relative risk-
adjusted performance. Thus, mutual funds (and Morningstar) have little discretion over
their assignment.

Second, as many fund families host multiple funds on their website (the average is 1.3
websites per family), a reasonable concern might be that the effect comes from a family-
specific shock correlated with the adoption (treatment). I address this in three ways. The first
approach is similar to how the empirical corporate finance literature deals with treatment at
the group-level when multiple firms enter the same group (e.g., multiple firms within a U.S.
state in which a law is passed, Giroud and Mueller, 2010; MacKinnon et al., 2023). I cluster
standard errors at the fund family (group) and time level. In Appendix Tables E.10 and E.11, I
show that the results are robust to this conservative clustering. In the second approach, I
restrict the sample to fund families with only one website per fund (Appendix Table E.12).
Results are unchanged. The third approach is to aggregate observations at the family-month
level. Appendix Table E.13 confirms the results hold.

Third, I use alternative measures of risk-adjusted performance beyond the CAPM alpha.
Results are robust and quantitatively stable using different measures of alpha (Appendix
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Tables E.7 and E.8).
Fourth, as expense ratios (and flows) change after adoption, including them as controls

could induce post-treatment bias (Roberts and Whited, 2013). For this reason, my baseline
specification excludes expense ratio and past fund flows. However, since these controls are
standard in the fund flows literature, I test robustness by adding them in Appendix Tables
E.4 and E.6. Results hold.

Finally, the results are not driven by a unique feature in Google Analytics —the most
widely adopted technology in my sample (see Table 2). One concern may be that Google
prioritizes funds that use Google Analytics in common browser searches, making those
funds more visible. I re-estimate the baseline specification excluding Google Analytics from
the set of data technologies in Appendix Table E.9. The results remain robust: estimates are
not driven by Google Analytics, but reflect a feature common to all data technologies.

5 Additional Effects of Learning from Customers’ Data

I interpret the results above as evidence that fund managers learn from data. However,
other channels may be consistent with similar evidence. To strengthen this interpretation, I
test additional hypotheses and rule out alternative explanations.

I first show that the effect is concentrated only on retail share classes, without affecting
institutional ones, consistent with web traffic data being informative about retail customers.
Next, I examine competitive effects: If funds learn from data, the effect should diminish as
more competing funds adopt similar tools. I then test for diminishing returns to information.
According to a learning channel, the marginal benefit of adoption should decline with
the number of technologies already in place. Further, I test whether adoption reduces
redemption uncertainty for fund managers. If managers indeed learn from data, having
more information about customers may allow them to hold a smaller cash buffer, allocate
more to illiquid assets, and lower redemption fees. Finally, I rule out alternative explanations
such as superior performance after adoption or funds’ rebranding.

5.1 A Learning Channel

The findings above hinge on the idea that fund managers learn information from web
traffic data. Arguably, web traffic data reveal more information about retail than institutional
investors. Thus, the effect of data adoption should be concentrated in retail share classes.
Mutual funds data offer a natural setting to test this prediction. I can compare the effect of
data technology on retail and institutional share classes within fund. I run a specification
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similar to equation (2), but at the share class level:

�;>F 9 ,8 ,C+1 = 
8 + �C + �� Data9 ,8 ,C + �' (Data9 ,8 ,C × Retail9 ,8 ,C) + #′^ 9 ,8 ,C + �9 ,8 ,C+1, (5)

where �;>F 9 ,8 ,C+1 is the flow of share class 9 of fund 8 in month C. Retail9 ,8 ,C is a dummy equal
to one if the share class 9 of fund 8 is sold to retail investors. Including fund fixed effects
allows to compare the effect on different share classes within the same fund. The coefficient
of interest is �', which measures the incremental effect of data adoption on retail share
classes. Learning about retail investors implies a joint prediction: flows of institutional share
classes should not respond to data adoption (�� = 0), while only retail share classes should
(�' > 0).

Table 8 about here

Table 8 reports the results and confirms this joint prediction. The effect of adoption is
concentrated in retail share classes, without any impact on institutional ones. The coefficient
�' (second row in columns (1)-(2)), is positive and significant across all specifications. The
magnitude aligns with earlier results: data technologies are associated with approximately
2% higher flows per year (0.175% monthly). By contrast, estimates for institutional share
classes are statistically indistinguishable from zero (first row in columns (1)-(2)). Estimates
are unchangedwhen running the specification in equation (2) for retail and institutional share
classes separately (columns (3)-(4)). These results support the view that website technologies
generate signals about retail investors, but provide no information on institutional investors.

I emphasize that this result does not imply that funds cannot learn useful information
on institutional investors or that information about those investors is irrelevant. Instead,
the evidence shows that this technology —web traffic analytics— does not generate signals
about institutional investors’ behavior.

The benefit of data also depends on who else has it. If many funds adopt similar data
technologies, the marginal value from adoption should decline. This is a common feature of
the value of information in settings with strategic substitutes (e.g., Grossman and Stiglitz,
1980). Therefore, I test whether there is a competition effect in the data space. I define a
coefficient that captures “data competition" within a fund category as:

�2,C =

∑#2,C

8=1 Data8 ,2,C
#2,C

, (6)

where#2,C is the total number of funds in category 2 inmonth C; and the sum in the numerator
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counts funds with data technology in place, in category 2 at time C. A larger �2,C implies
that a larger fraction of funds within a fund-category collect investors’ data. I then estimate
specification (2) by bins of �2,C at the time of adoption. Figure 3 presents the results.

Figure 3 about here

First movers benefit significantly more from adopting data technologies than later
adopters. The effect declines monotonically with competition. The leftmost bar in Figure
3 shows that funds adopting when competition is low (�2,C < 25%) attract about 5% more
annual flows (0.39% monthly). On the other hand, funds adopting when more than 75% of
peers already have data show no effect.

Competition also reduces benefits for funds that have already adopted. Appendix Table
E.20 reports regressions with an interaction between adoption and �2,C . This term captures
how post-adoption competition affects the value of data. The coefficient is negative and
significant: benefits from data erode as more competing funds adopt. Estimates suggest
that when all peers within a fund’s category analyze customers’ data (�2,C → 100%), the
additional rents are indistinguishable from zero.

Another natural prediction of a learning channel is that the marginal benefit from adding
(new) information should decrease (Veldkamp, 2011). Different data technologies generate
different signals. For example, Hotjar provides heatmaps of web traffic interactions, while
LinkedIn Insights allows to collect demographic data from social media. Although these
signals differ, their incremental value should fall if managers learn from data.

I can test this prediction using the number of technologies installed by a given fund. I
group the number of technologies into five bins:  = 1,  = 2,  = [3, 10],  = [11, 15], and
 > 15, where  denotes the number of technology installed. Then, I plot the bin coefficients
relative to  = 0 (the baseline) in Figure 4. Each point estimate shows how flows differ for
funds in that bin versus funds with no data technology.

Figure 4 about here

Point estimates rise with  , as a fund adopts more data technologies, but at a decreasing
rate. I also overlay a concave line fit, Ĥ = 
 + � log(1 +  ) (solid blue line). This pattern is
overall consistent with decreasing marginal benefits from data. In Appendix Table E.21, I
also estimate a specification including the number of data technologies and its square. When
the squared number of technologies is included, its coefficient enters negatively (although
not significantly) in the regression, suggesting again concave returns to data.
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Another implication of learning from data is better liquidity management. Mutual fund
managers face uncertainty about investors’ redemption needs and therefore hold cash buffers
to meet unexpected liquidity demands. Because data reduces uncertainty, managers with
more customers’ data may better predict redemptions. If so, data managers should hold less
cash, particularly when expected returns are high, as holding cash is most costly in such
states.

To test this prediction, I study whether (after adoption) funds reduce their cash buffers
when expected returns are high. As my sample includes only equity funds, I can proxy
for expected returns using the fund portfolio’s dividend–price ratio. Specifically, I run the
following regression:

F8 ,@(20Bℎ) = 
8 + �@ + �1 · �/%8 ,@ + �2 · (�/%8 ,@ ×Data8 ,@) + #′^ 8 ,@ + �8 ,@ , (7)

where F8 ,@(20Bℎ) is fund 8’s portfolio weight in cash (in %) in quarter @, and ^ 8 ,@ is the same
fund-quarter controls’ vector as in earlier specifications.

Expected returns are high when the dividend–price ratio is high, as equity prices are
relatively low compared to dividends. I therefore expect �1 < 0: fund managers, on average,
reduce cash to invest in attractive opportunities. The coefficient of interest in this specification
is the interaction term (�2), which measures whether data managers reduce cash buffers
more aggressively when expected returns are high. As before, identification here comes
from time-series variation within funds, not cross sectional differences across funds.

Table 9 about here

Table 9 reports the results. The first two rows present estimates for �1 and �2.
First of all, column (1) confirms the baseline intuition: when the dividend–price ratio is

high (higher expected returns), managers reduce cash holdings. Columns (2) and (3) add
the interaction with Data8 ,C . As predicted, funds with data technology in place maintain a
lower cash buffer (�2 < 0). These results support the interpretation that managers extract
information from customers’ data.

I next examine whether managers reallocate more into illiquid assets. Illiquid stocks offer
higher expected returns on average, but they are costly to liquidate if investors require fast
redemptions. Funds therefore face a risk-return trade-off in holding such assets (Gómez,
Prado and Zambrana, 2024). If data reduce uncertainty about redemptions, managers should
tilt more toward illiquid holdings after adoption. Consistent with this intuition, reducing
uncertainty about investors’ liquidity needs might lead managers to hold more illiquid assets
after adoption of a data technology.
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Columns (5) and (6) in Table 9 confirm the hypothesis. Fund managers who adopt a data
technology increase their exposure to illiquid stocks, as measured by the portfolio’s Amihud
illiquidity ratio. Although beyond the scope of this paper, these findings may raise concerns
about financial stability, as illiquid assets typically force funds to engage in fire sales when
unforeseen shocks occur.

On a similar note, fund managers may be more lenient on redemption fees when they can
anticipate redemptions. I can test this last hypothesis directly using N-SAR filings, in which
funds disclose semi-annually whether they impose redemption fees to investors liquidating
their positions. Columns (7) and (8) in Table 9 show that after adoption, funds are about
7% less likely to charge redemption fees to investors (−0.017/0.240 = −0.07). This pattern
is consistent with data managers being less uncertain about liquidity needs after adoption.
Overall, these results support the idea that fund managers learn from customers’ data.

5.2 Alternative Channels

The evidence above confirms the interpretation that fund managers use data technologies
to learn about investors. However, a limitation I share with most empirical papers on
information/data is that I cannot observe a fundmanager’s information set directly. However,
I can show results consistent with a learning interpretation (above) and rule out alternative
explanations that might account for the findings above. Here, I examine two alternative
stories and show that they are not supported empirically.

The first alternative explanation is that the adoption of data technologies correlates with
managers’ ability to generate alpha. For example, managers may adopt data technologies
right after acquiring data-analysis expertise. If such skills improve the fund’s risk-adjusted
performance, investors would notice it and allocate more to that fund. Appendix Tables
E.22 test this hypothesis using several performance measures, as well as using the recursive
demeaning approach of Pástor, Stambaugh and Taylor (2015). Across all specifications, I find
no material change in fund managers’ ability to generate alpha after adoption. Therefore,
since investors should be able to observe managers’ superior ability if this were the main
driver of my results, this alternative explanation seems implausible.

A second alternative interpretation of my findings is that adoption coincides with a
fund’s rebranding. For instance, funds may refresh their websites to restore the perception
of their brand for investors, and in the process, install new technologies. If this is the case,
my results would purely capture cosmetic changes to websites rather than learning. This
channel matters because rebranding could explain inflows or product launches, without
implying that managers actually extract information from customers’ data.
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To test this alternative, I conduct a series of falsification tests using placebo websites’
plugins that are unrelated to customers’ data collection. These include, for example, plugins
used to improve a website’s performance, as well as feeds (used to publish blogs), or
advertising technologies. I restrict attention to placebo technologies with adoption rates
similar to those of data technologies in my sample, to ensure a fair comparison and that
results are not being driven by a lack of power. Then, I re-estimate the baseline regression,
replacing Data8 ,C with each of the placebo technologies.

Figure 5 about here

Figure 5 reports the 95% confidence intervals for all coefficients on placebo technologies.
All estimates are statistically indistinguishable from zero. This result contrasts with the
positive and significant effects of data technologies. This evidence rules out a rebranding
story and reinforces the interpretation that the main findings reflect managers’ learning from
customers’ data.

Overall, the evidence supports a channel based on fundmanagers using new technologies
to learn about customers and tailor products accordingly. That said, it is important to
acknowledge that I cannot entirely rule out the possibility that other mechanisms may
explain my results. Any alternative explanation, however, must also fit the broader set of
results. For example, alternative interpretations should explain why adoption leads to more
illiquid holdings, why the effect is concentrated in retail share classes, and why the results
are specific to technologies that collect and analyze customers’ data.

6 How do Funds Attract More Flows?

Howdo funds benefit fromdata? Assetmanagers can cater to investors’ demands through
two main approaches: by selling their existing products more effectively, or by differentiating
the products they offer. The first mechanism works by improving targeting and distribution
to improve sales. For example, funds might reallocate resources to affiliated bank advisors or
employ wholesalers, whose task is to pitch the fund through their distribution channels. The
second approach implies modifying the product itself, such as adjusting portfolio choices, to
better align with investors’ tastes. A common example is rebalancing toward ESG stocks in
response to demand for sustainable investing. The results show that both mechanisms play
a role. Within existing fund, the benefit comes primarily by becoming better at selling, while
at the fund family I find evidence consistent with horizontal differentiation.
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6.1 Marketing Better Existing Funds

I first examine the mechanisms at play within existing fund. I compare the effects of
data adoption on active and passive funds. Passive funds have little scope for discretionary
changes in their portfolio holdings. Therefore, if the effects originate mainly from product
differentiation, the results should be concentrated only in active funds. I split the sample
into active and passive funds and estimate the main specification separately for each group.
I report the results in Table 10.

Table 10 about here

Pure product differentiation is unlikely to be the only driver of how funds benefit from
data technology. I find similarly strong results on flows and fees, for both active and passive
funds. The first four columns in Table 10 show results on fund flows: columns (1)-(2) for
active funds, and columns (3)-(4) for passive funds. In both groups, funds receive significantly
more capital after adoption. Columns (5) to (8) confirm the same pattern for the impact of
data technologies on fees. All these results are consistent with a selling channel. If product
differentiation were the primary mechanism, I should find weak or no effects among passive
funds. By analyzing investors’ data, funds improve their targeting and selling strategies
rather than solely focusing on product design. This resonates with anecdotal evidence. For
instance, Broadridge (2023) describes how fund families can use data to identify which
distribution channels are more effective and reallocate resources accordingly.

To further support this interpretation, I test whether marketing becomes more effective
in attracting flows after the adoption of data technologies. If customer data are informative
about potential investors’ preferences, marketing and sales efforts might become more
targeted and productive. In this case, I expect asset management companies to shift more
resources toward sales and marketing, and for those expenditures to attract more flows. I test
these predictions using fund-level data on marketing and sales expenditures from N-SAR
filings.

N-SAR filings contain detailed information on funds’ marketing activities. In particular,
I observe total marketing expenditures as well as the allocation of 12b-1 payments across
distribution channels. 12b-1 fees are typically referred to as marketing and distribution fees.
They represent annual charges that funds deduct from the AUM to finance distribution
activities.28 N-SAR filings report information on how funds distribute their 12b-1 fees
payments to different channels, including captive retail sales force, which refers to the internal

2812b-1 fees are capped at 1% of AUM annually and are typically reported as part of the fund’s expense ratio.
Therefore, investors ultimately bear the cost of these fees.
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sales force of the fund. Payments to unaffiliated intermediaries must be reported separately.
This distinction allows me to distinguish between in-house selling resources from external
intermediation.

A salient example of captive retail sales force is J.P. Morgan Asset Management, which
distributes its mutual funds through advisors and bankers located in retail branches.
These employees are not independent intermediaries but rather staff of the affiliated bank.
Compensation for their selling activities is in part financed by 12b-1 fees. A similar example
is in-house wholesalers, whose primary role is to pitch funds to financial advisors.29 Unlike
third-party intermediaries, these employees are dedicated exclusively to promoting the firm’s
own products, and their salaries are internal sales expenditures.

Tables 11 and 12 about here

I divide the total dollar amount paid to captive retail sales force by the fund’s AUM. Then,
I examine whether funds modify their 12b-1 fees payments after adoption. Columns (1)-(2) in
Table 11 show the results. After adoption, managers increase their 12b-1 payments to internal
sales resources. This shift toward internal sales is consistent with a selling mechanism that
relies more on in-house sales personnel (Kostovetsky and Manconi, 2018).

Appendix Table E.23 shows how managers reallocate 12b-1 payments across categories.
Managers increase spending on internal sales forces by cutting payments to brokers and
dealers (external). At the same time, funds redirect resources toward printing and mailing
prospectuses to prospective investors (column (4)).

I find similar evidence on broader marketing and sales expenditures. These expenditures
differ from the 12b-1 allocations because they cover the total costs of sales, rather than just
the portion financed by 12b-1 fees. In practice, funds often spend more than what they
collect charging 12b-1 fees, supplementing these with other resources. In columns (3)-(4)
of Table 11, I use again data from N-SAR filings to examine the change in total marketing
expenditures after adoption. Similar to earlier results, total sales expenditures also increase
after adoption.

Next, I test whether marketing efforts become more effective after funds adopt data
technologies. Roussanov, Ruan and Wei (2020) highlight the importance of mutual funds’
marketing for attracting investors’ capital (see also Reuter and Zitzewitz (2006); Kostovetsky
and Manconi (2018); Chen et al. (2022) for similar evidence). If data improve the targeting
of marketing efforts, I expect a stronger association between marketing expenditures and

29In Appendix Figure E.6 I examine whether results are concentrated in no-load funds, or they also hold for
intermediated (broker-sold) funds (Del Guercio and Reuter, 2014). Results are similar for both types of funds.
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subsequent fund flows after adoption. Table 12 confirms this prediction. The baseline
coefficients in columns (1)–(2) (first row) show that marketing and sales spending, on average,
positively predicts future flows: a 1% increase in marketing leads to additional 0.19% flows.
In columns (3)–(4), I report results for the interaction term of marketing and sales with the
adoption of data analytics technology (second row). The relationship between marketing
expenditures and flows strengthens after adoption. The interaction term is statistically
and economically significant, consistent with marketing and sales efforts becoming more
productive after collecting potential customer data.

If funds cater to retail investors, I should find observable changes in their marketing and
distribution material. I test this hypothesis by analyzing whether text in fund prospectuses
becomesmore appealing to retail investors after adoption. I focus on the Principal Investment
Strategy (PIS) section —the key standardized disclosure of a fund’s investment strategy
(Abis, 2022). I measure the prospectus readability with the Flesch Reading Ease (FRE)
index30 (Flesch, 1948), average words per sentence (deHaan et al., 2021), and by the frequency
of second-person pronouns (e.g., “you”, “your”), which prior work in marketing links to
stronger retail engagement (Cruz et al., 2017). Table 13 presents the results.

Table 13 about here

After adoption, fund prospectuses become easier to read, shorter, and more direct. The
readability of prospectuses (FRE index) increases by 3.5% (0.781/22 = 3.55%). At the same
time, average sentence length falls by 4%. Prior work interprets longer sentences as evidence
of obfuscation (deHaan et al., 2021), as fund managers often use complexity to justify higher
fees. In contrast, I find that fund managers simplify disclosure once they start collecting data
about investors’ preferences.

This result is important. The literature on product complexity/obfuscation shows that
intermediaries often use complexity to persuade investors and extract rents; here, I find the
opposite.31 These results help distinguish whether managers use data to meet investors’
demand or to persuade them more effectively. The evidence points to a favorable effect of
data: Table 13 suggests that managers use data to cater to investors’ needs (e.g., Gennaioli
et al., 2015), rather than to persuade or obfuscate (Célérier and Vallée, 2017).

30The FRE index indicates how difficult a passage in English is to understand. A higher score means the text
is easier to read.

31Starting with Carlin (2009), Mullainathan et al. (2008), and Lerner and Tufano (2011), a growing body
of work documents this mechanism. For example, Célérier and Vallée (2017) shows that European banks
employed complex descriptions to sell structured products, while Vokata (2021, 2025) find that products
marketed to households with complex language offer attractive yields but deliver strongly negative risk-adjusted
performance. Genaro et al. (2025) provides a recent overview of this literature.
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Fund prospectuses also mention more themes (Ben-David et al., 2022). I measure the
frequency at which the prospectus’ text includes words linked to themes such as clean energy,
cybersecurity, or cannabis (see Appendix D for the entire list of themes and the respective
words). Columns (7)-(8) in Table 13 show that these changes are again consistent with an
effort to tailor toward retail investors’ interests.

I then investigate further the horizontal differentiation mechanism, within fund. Since
the two mechanisms are not mutually exclusive, it is still possible that this channel also plays
a role. According to this mechanism, funds modify their existing products. For instance,
they may rebalance their portfolios towards stocks with characteristics appealing to retail
investors. To do so, I test whether adoption leads to significant portfolio differentiation.

I first compute the holdings’ distance measure in Hoberg, Nitin and Prabhala (2017). This
measure is based on the pairwise distance between fund holdings, and it is similar in spirit
to Hoberg and Phillips (2016). I denote the average pairwise distance between fund 8 and
its peers in quarter @, as 3̄8 ,C . A higher distance indicates that fund 8 is differentiating more
from other funds, meaning it is more unique.

Table 14 about here

I examine the effects of data technology adoption on product differentiation in Table 14
Estimates on 3̄ are positive, but quantitatively small and marginally significant. These results
do not allow me to reject the null hypothesis that funds increase product differentiation after
adoption. At best, the evidence points to only limited change in product differentiation.

I find similar evidence using the idiosyncratic volatility of a fund’s portfolio returns. The
intuition for this measure is simple. If a fund differentiates more, its return should become
more idiosyncratic, as it is less spanned by the market or common risk factors. I compute
the idiosyncratic volatility of each stock in a fund’s portfolio as the standard deviation of
residuals from a Fama-French 3-factors model. Then, I aggregate to construct the portfolio
idiosyncratic volatility. I find no significant shift in idiosyncratic volatility after adoption
(columns (3)-(4) in Table 14).

I find again similar evidence on a fund’s active share (Cremers and Petajisto, 2009). Active
share measures the extent to which a fund deviates from its benchmark. It represents the
share of holdings that differ from a fund’s benchmark and serves as a standard proxy for
how far a portfolio deviates from its benchmark. Columns (5) and (6), in Table 14, report no
significant change in a fund’s active share after adoption. If anything, the effect is mildly
negative.32

32This slight decline is consistent with the prediction of Berk and Green (2004); Berk and van Binsbergen
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Finally, Kostovetsky and Warner (2020) argue that funds perceived by investors as more
unique face lower flow-performance sensitivity. Because investors view those products
as less substitutable, they are less likely to reallocate capital after observing realization of
risk-adjusted performance. Consistent with this idea, in Appendix Table E.24 I find that
after adopting data technologies, funds exhibit a decline in flow-performance sensitivity,
suggesting that investors perceive these funds as more unique.

All the results above rest on changes for an existing fund, as variation in my identification
strategy comes from within fund variation. It is plausible that the fund family decides to
horizontally differentiate by launching new funds. Therefore, I next examine the mechanism
at play within fund family.

6.2 Product Differentiation within Fund Family

Fund families with better knowledge of investors’ preferences may expand their product
offerings to cater to specific customer demands. To test this prediction, I examine whether
fund families increase the number of funds they offer after adopting a data technology,
relative to non-adopters. I aggregate observations at the fund family-month level and
estimate the following specification:

;>6(N. of Funds 5 ,C+1) = 
 5 + �C + � Data 5 ,C + � 5 ,C+1, (8)

where N. of Funds 5 ,C+1 denotes the number of funds offered by family 5 in month C + 1.
Similarly to previous specifications, the dummy variable Data 5 ,C equals one if at least one
fund within family 5 has adopted a data technology in month C. Family and time fixed
effects ensure that identification comes from variation in the number of funds offered before
versus after data adoption, relative to the same change for fund families not adopting data
technologies.33 I report results in columns (1) and (2) of Table 15.

Table 15 about here

Adopting a data technology leads fund families to increase their product offerings.
Columns (1) and (2) of Table 15 show that fund families with a data technology offer on
average 20% more funds after adoption. In column (2), I control for the fund family’s AUM

(2015). When flows push a fund’s AUM above the scale that maximizes alpha, their framework predicts that
managers index the marginal dollar.

33Because the argument of the ;>6 in my specification is never zero, the regression does not face the
identification challenges that arise when the argument can equal zero (see Chen and Roth, 2023).
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and age, as it is plausible that families develop organizational skills, which reduces the
cost of setting up a new fund. The results remain unchanged: fund families expand their
product menu after adopting a data analytics technology. This result mirrors the effect of
other emerging technologies, such as AI, on firms’ product portfolios. Babina, Fedyk, He
and Hodson (2024) finds that more AI-intensive firms expand their product varieties, as AI
facilitates the accumulation of knowledge and reduces uncertainty in innovation.

I next examine whether the newly launched funds cater to specific investor preferences. I
collect Principal Investment Strategy (PIS) text from mutual fund prospectuses, and search
for words linked to retail-oriented themes such as ESG, AI, cybersecurity, cannabis, political
values, space, and video games.34 Then, I compute the number of such “thematic” words per
100 words of text, and compare newly launched funds by data adopters versus non-adopters.
I include year fixed effects to ensure results do not capture the secular rise of thematic funds
in recent years (Ben-David, Franzoni, Kim andMoussawi, 2022). Columns (3) and (4) in Table
15 confirm this intuition. Funds launched by families with data technology are more likely to
reference themes in high demand from retail investors, mentioning 0.07 more theme-related
words per 100 words. This effect amounts to a 45% increase from the sample mean of 0.157
theme-related words every 100 words.

In sum, this evidence indicates that funds attract more flows primarily by selling their
existing products better and expanding product offerings. The effects are present for both
active and passive funds, and funds increase in-house sales rep expenditures. Prospectuses
become clearer and more retail-oriented. At the same time, I find little change in product
differentiation within fund. The fund family, on the other hand, launch new funds and meet
specific demand.

6.3 Discussion on Value Added

Overall, these findings show that asset managers benefit from customers’ data. A natural
follow-up question is whether data technologies improve welfare or merely redistribute
rents. This is an important question. Recent advances in technologies have increased the
ability of many firms to collect detailed information from customers, raising fundamental
questions about competitive and welfare consequences of a ”data economy”.

Whether better matching with investors’ preferences improves welfare depends on
investors’ ex-ante risk exposures —and possibly their privacy concerns. A thorough answer
to this question is beyond the scope of this paper, and would require observing detailed
household data, such as brokerage accounts. However, under specific assumptions, the

34Appendix D lists the complete set of keywords.
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mutual fund industry provides a tractable setting to make progress.
Berk and van Binsbergen (2015) develop a measure of value added by fund managers in

equilibrium. This measure relies on three assumptions: (i) investors are rational, (ii) markets
are competitive, and (iii) managers maximize profits. Under these conditions, a fund’s value
added equals its assets under management (AUM)multiplied by its expense ratio. According
to this measure, in equilibrium, only skilled funds generate high value added because they
both attract large AUM and command high fees. This measure allows me to quantify the
monetary gains from data technology for the asset management industry. Under the three
assumptions above, these monetary amounts map directly into utilitarian welfare gains.

Data technologies raise value added through two channels: larger fund flows (higher
AUM), and higher fees. All else equal, after adoption, each adopting fund attract approxi-
mately 1.5% additional flows annually. This flow effect alone raises value added by about
$150,000 per fund, each year.35 In addition, funds raise fees by about 3 basis points after
adopting data technology. However, this effect is modest, contributing only about $3,000
per year in value added. Therefore, the increase in value added stems almost entirely from
larger AUM.

Crucially, funds do not improve risk-adjusted performance after adopting data technology
(see Section 5.2). As a result, asset managers capture the entire additional value, rather
than sharing it with investors. This surplus represents the monetary value of customers’
data accruing to the asset management industry. Across the industry, the additional value
added from data technology amounts to approximately $343 million each year. Under the
neoclassical assumptions discussed above, this surplus coincides with utilitarian welfare
gains from a better match between products and investors’ preferences.

I emphasize that these conclusions are based on strict assumptions. Therefore, this
discussion should be interpreted within this context. For example, this logic abstracts from
whether additional flows come from reallocating funds away from passive strategies or from
shifting consumption into savings. Furthermore, if investors’ preferences are sub-optimal,
data technology may redistribute welfare rather than create new value. In all these scenarios,
broader access to customers’ data heightens the importance of educating households on
investment decisions.

35The average fund in my sample adds $5.23 million per year, in January 2000 dollars (about $9.81 million, in
September 2025 dollars). This figure is comparable to results in Berk and van Binsbergen (2015), who estimate
that funds added about $3.2 million (in January 2000 dollars) annually between 1962 and 2011.
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7 Concluding Remarks

The development of new technologies is changing how asset managers operate. While
existing research focuses on their impact on portfolio allocation decisions, this paper shows
that technological innovation also affects how managers attract and retain capital. Using
novel data on website technologies, I show that asset managers actively collect and analyze
customers’ data, leading to 1.5% higher annual flows for adopting funds.

The effects concentrate in retail share classes, decline with data competition, and improve
liquidity management as funds become less uncertain about redemptions. After adoption,
managers expand product menus and raise fees, consistent with customers’ data helping
product placement and pricing strategies. To alleviate endogeneity concerns, I instrument
adoption by the local supply of graduates in data analytics and find similar results. Further,
I exploit the release of TensorFlow in November 2015, an open-source machine learning
library, as plausibly exogenous shock to the precision of signals managers extract from data.
These strategies confirm the results that managers benefit from customers’ data.

These findings underline the economic importance of asset managers learning investors’
preferences to attract capital. Data technologies increase the value added that asset managers
extract from financial markets, as funds attract more AUM and charge higher fees. However,
managers retain these gains, as the products offered remain largely unchanged.

This mechanism raises important questions about market efficiency and managerial
incentives. While better knowledge of investor tastes can help improve matching between
funds and investors, it may reduce incentives to generate alpha and shift effort toward
targerting and selling. Whether investors’ preferences are optimal becomes evenmore critical
for the overall implications of new technologies. Moreover, as managers use investors’ data to
predict liquidity needs and reduce cash buffers by holding more illiquid assets, technological
advances may raise new concerns for financial stability.

37



References
Abis, Simona (2022) “Man vs. Machine: Quantitative andDiscretionary EquityManagement,”Working

paper.

Abis, Simona and Anton Lines (2024) “Broken promises, competition, and capital allocation in the
mutual fund industry,” Journal of Financial Economics, Vol. 162, p. 103948.

Abis, Simona and Laura Veldkamp (2023) “The Changing Economics of Knowledge Production,” The
Review of Financial Studies, Vol. 37, No. 1, pp. 89–118, 08.

Amazon (2025) “Amazon Cookie Policy,”Technical report.

Arellano-Bover, Jaime, Carolina Bussotti, Matteo Paradisi, and LiangjieWu (2025) “The Labor Demand
Implications of Brand Capital: Insights from Trademark Transactions in Italy,”Working paper.

Argyle, Bronson, Taylor Nadauld, and Christopher Palmer (2022) “Real Effects of Search Frictions in
Consumer Credit Markets,” The Review of Financial Studies, Vol. 36, No. 7, pp. 2685–2720, 11.

Babina, Tania, Anastassia Fedyk, Alex He, and James Hodson (2024) “Artificial intelligence, firm
growth, and product innovation,” Journal of Financial Economics, Vol. 151.

Baker, Scott R., Brian Baugh, and Marco Sammon (2023) “Customer Churn and Intangible Capital,”
Journal of Political Economy Macroeconomics, Vol. 1, No. 3, pp. 447–505.

Baley, Isaac and Laura L. Veldkamp (2025) The Data Economy: Tools and Applications, Princeton, NJ:
Princeton University Press.

Barber, Brad M., Xing Huang, and Terrance Odean (2016) “Which Factors Matter to Investors?
Evidence from Mutual Fund Flows,” The Review of Financial Studies, Vol. 29, No. 10, pp. 2600–2642,
October.

Basten, Christoph and Steven Ongena (2020) “The Geography of Mortgage Lending in Times of
FinTech,” CEPR Discussion Paper, No. DP14918.

Belo, Frederico, Xiaoji Lin, and Maria Ana Vitorino (2014) “Brand capital and firm value,” Review of
Economic Dynamics, Vol. 17, No. 1, pp. 150–169.

Ben-David, Itzhak, Francesco Franzoni, and Rabih Moussawi (2018) “Do ETFs Increase Volatility?,”
The Journal of Finance, Vol. 73, No. 6, pp. 2471–2535.

Ben-David, Itzhak, Francesco Franzoni, Byungwook Kim, and Rabih Moussawi (2022) “Competition
for Attention in the ETF Space,” The Review of Financial Studies, Vol. 36, No. 3, pp. 987–1042, 08.

Ben-David, Itzhak I., Jiacui Li, Andrea Rossi, and Yang Song (2022) “What Do Mutual Fund Investors
Really Care About?” The Review of Financial Studies, Vol. 35, No. 4, pp. 1723–1774, April.

Berk, Jonathan B. and Richard C. Green (2004) “Mutual Fund Flows and Performance in Rational
Markets,” Journal of Political Economy, Vol. 112, No. 6, pp. 1269–1295.

Berk, Jonathan B. and Jules H. van Binsbergen (2015) “Measuring skill in the mutual fund industry,”
Journal of Financial Economics, Vol. 118, No. 1, pp. 1–20.

38



(2016) “Assessing asset pricing models using revealed preference,” Journal of Financial
Economics, Vol. 119, No. 1, pp. 1–23.

Betermier, Sebastien, David Schumacher, and Ali Shahrad (2023) “Mutual Fund Proliferation and
Entry Deterrence,” The Review of Asset Pricing Studies, Vol. 13, No. 4, pp. 784–829.

Birru, Justin, Sinan Gokkaya, Xi Liu, and Stanimir Markov (2024) “Quants and market anomalies,”
Journal of Accounting and Economics, Vol. 78, No. 1.

Bonelli, Maxime (2024) “Data-driven Investors,”Working paper.

Bonelli, Maxime and Thierry Foucault (2024) “Displaced by Big Data: Evidence from Active Fund
Managers,”Working paper.

Bonelli, Maxime, Anastasia Buyalskaya, and Tianhao Yao (2024) “Financial Product Incentives to
Differentiate: Evidence from Mutual Funds,”Working paper.

Broadridge (2023) “Market Analytics,”Technical report.

Brynjolfsson, Erik and Kristina McElheran (2016) “The Rapid Adoption of Data-Driven Decision-
Making,” American Economic Review, Vol. 106, No. 5, p. 133–39, May.

Buchak, Greg, Vera Chau, and Adam Jørring (2023) “Integrated Intermediation and Fintech Market
Power,” Swiss Finance Institute Research Paper No. 23-67.

Callaway, Brantly and Pedro H.C. Sant’Anna (2021) “Difference-in-Differences with multiple time
periods,” Journal of Econometrics, Vol. 225, No. 2, pp. 200–230.

Carlin, Bruce I. (2009) “Strategic price complexity in retail financial markets,” Journal of Financial
Economics, Vol. 91, No. 3, pp. 278–287.

Cen, Xiao, Winston Wei Dou, Leonid Kogan, and Wei Wu (2024) “Fund Flows and Income Risk of
Fund Managers,”Working paper.

Charoenwong, Ben, Zachary T. Kowaleski, Alan Kwan, and Andrew G. Sutherland (2024) “RegTech:
Technology-driven compliance and its effects on profitability, operations, and market structure,”
Journal of Financial Economics, Vol. 154.

Chen, Jiafeng and Jonathan Roth (2023) “Logs with Zeros? Some Problems and Solutions*,” The
Quarterly Journal of Economics, Vol. 139, No. 2, pp. 891–936, 12.

Chen, Jane, Wenxi Jian, and Mindy Z. Xiaolan (2022) “The Economics of Mutual Fund Marketing,”
Working paper.

Chernenko, Sergey and Adi Sunderam (2020) “Do fire sales create externalities?” Journal of Financial
Economics, Vol. 135, No. 3, pp. 602–628.

Chevalier, Judith and Glenn Ellison (1997) “Risk Taking byMutual Funds as a Response to Incentives,”
Journal of Political Economy, Vol. 105, No. 6, pp. 1167–1200.

Chi, Feng, Byoung-Hyoun Hwang, and Yaping Zheng (2024) “The Use and Usefulness of Big Data in
Finance: Evidence from Financial Analysts,”Management Science.

39



Christoffersen, Susan E.K. and Sergei Sarkissian (2009) “City size and fund performance,” Journal of
Financial Economics, Vol. 92, No. 2, pp. 252–275.

Christoffersen, Susan, David K.Musto, and RussellWermers (2014) “Investor Flows to AssetManagers:
Causes and Consequences,” Annual Review of Financial Economics, Vol. 6, No. 1, pp. 289–310.

Chung, Cindy and Laura Veldkamp (2024) “Data and the Aggregate Economy,” Journal of Economic
Literature, Vol. 62, No. 2, p. 458–84, June.

Coleman, Braiden, Kenneth Merkley, and Joseph Pacelli (2022) “Human Versus Machine: A Com-
parison of Robo-Analyst and Traditional Research Analyst Investment Recommendations,” The
Accounting Review, Vol. 97, No. 5, pp. 221–244.

Cong, Lin W., Danxia Xie, and Longtian Zhang (2021) “Knowledge Accumulation, Privacy, and
Growth in a Data Economy.”

Conley, Timothy G. and Christopher R. Udry (2010) “Learning about a New Technology: Pineapple
in Ghana,” American Economic Review, Vol. 100, No. 1, p. 35–69.

Cremers, K.J. Martĳn and Antti Petajisto (2009) “How Active Is Your Fund Manager? A NewMeasure
That Predicts Performance,” The Review of Financial Studies, Vol. 22, No. 9, pp. 3329–3365.

Cruz, Ryan E., James M. Leonhardt, and Todd Pezzuti (2017) “Second Person Pronouns Enhance
Consumer Involvement and Brand Attitude,” Journal of Interactive Marketing, Vol. 39, pp. 104–116.

Cujean, Julien (2020) “Idea sharing and the performance of mutual funds,” Journal of Financial
Economics, Vol. 135, No. 1, pp. 88–119.

Cvitanić, Jakša and Julien Hugonnier (2022) “Optimal fund menus,” Mathematical Finance, Vol. 32, No.
2, pp. 455–516.

Célérier, Claire and Boris Vallée (2017) “Catering to Investors Through Security Design: Headline
Rate and Complexity,” The Quarterly Journal of Economics, Vol. 132, No. 3, pp. 1468–1508.

D’Acunto, Francesco and Alberto G. Rossi (2023) “Robo-Advice: Transforming Households into
Rational Economic Agents,” Annual Review of Financial Economics, Vol. 15, No. Volume 15, 2023, pp.
543–563.

Dannhauser, Caitlin D. and Harold D. Spilker (2023) “The Modern Mutual Fund Family,” Journal of
Financial Economics, Vol. 148, No. 1, pp. 1–20.

de Chaisemartin, Clément and Xavier D’Haultfœuille (2020) “Two-Way Fixed Effects Estimators
with Heterogeneous Treatment Effects,” American Economic Review, Vol. 110, No. 9, p. 2964–96,
September.

deHaan, Ed, Yang Song, Chloe Xie, and Christina Zhu (2021) “Obfuscation in mutual funds,” Journal
of Accounting and Economics, Vol. 72, No. 2.

Del Guercio, Diane and Jonathan Reuter (2014) “Mutual Fund Performance and the Incentive to
Generate Alpha,” The Journal of Finance, Vol. 69, No. 4, pp. 1673–1704.

Dessaint, Olivier, Thierry Foucault, and Laurent Frésard (2024) “Does Alternative Data Improve
Financial Forecasting? The Horizon Effect,” The Journal of Finance, Vol. 79, No. 3, pp. 2237–2287.

40



Dou, Winston Wei, Leonid Kogan, and Wei Wu (2024) “Common Fund Flows: Flow Hedging and
Factor Pricing,” The Journal of Finance (forthcoming).

Dugast, Jerome and Thierry Foucault (2024) “Equilibrium Data Mining and Data Abundance,” The
Journal of Finance.

Edelen, Roger M. (1999) “Investor flows and the assessed performance of open-end mutual funds,”
Journal of Financial Economics, Vol. 53, No. 3, pp. 439–466.

Ellison, Glenn and Sara Fisher Ellison (2009) “Search, Obfuscation, and Price Elasticities on the
Internet,” Econometrica, Vol. 77, No. 2, pp. 427–452.

Evans, Richard B. (2010) “Mutual Fund Incubation,” The Journal of Finance, Vol. 65, No. 4, pp. 1581–1611.

Evans, Richard, Juan-Pedro Gomez, and Rafael Zambrana (2024) “MiFID II Research Unbundling:
Cross-border Impact on Asset Managers,”Working paper.

Fama, Eugene F. and Kenneth R. French (1993) “Common risk factors in the returns on stocks and
bonds,” Journal of Financial Economics, Vol. 33, No. 1, pp. 3–56.

Fama, Eugene F and Kenneth R French (2015) “A five-factor asset pricing model,” Journal of Financial
Economics, Vol. 116, No. 1, pp. 1–22.

Farboodi, Maryam and Laura Veldkamp (2020) “Long-Run Growth of Financial Data Technology,”
American Economic Review, Vol. 110, No. 8, p. 2485–2523, August.

(2023) “A Model of the Data Economy.” NBER Working Paper No. w28427.

Farboodi, Maryam, Adrien Matray, Laura Veldkamp, and Venky Venkateswaran (2021) “Where Has
All the Data Gone?,” The Review of Financial Studies, Vol. 35, No. 7, pp. 3101–3138.

Farboodi, Maryam, Dhruv Singal, Laura Veldkamp, and Venky Venkateswaran (2024) “Valuing
Financial Data,” The Review of Financial Studies.

Flesch, Rudolf (1948) “A new readability yardstick,” Journal of Applied Psychology, Vol. 32, No. 3, pp.
221–233.

Franzoni, Francesco and Martin C. Schmalz (2017) “Fund Flows and Market States,” The Review of
Financial Studies, Vol. 30, No. 8, pp. 2621–2673, 03.

Gardner, John (2021) “Two-Stage Differences in Differences,”Working paper.

Gardner, John, Neil Thakral, Linh T. To, and Yap Luther (2024) “Two-Stage Differences in Differences,”
Working paper.

Genaro, Alan, Jose Maria Liberti, Pedro A. C. Saffi, and Jason Sturgess (2025) “Product Complexity,
Investor Experience, and Returns,”Working paper.

Gennaioli, Nicola, Rafael La Porta, Florencio Lopez-de Silanes, and Andrei Shleifer (2013) “Human
Capital and Regional Development,” The Quarterly Journal of Economics, Vol. 128, No. 1, pp. 105–164.

Gennaioli, Nicola, Andrei Shleifer, and Robert Vishny (2015) “Money Doctors,” The Journal of Finance,
Vol. 70, No. 1, pp. 91–114.

41



Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov (2006) “Predicting volatility: getting the most
out of return data sampled at different frequencies,” Journal of Econometrics, Vol. 131, No. 1, pp.
59–95.

Giroud, Xavier and Holger M. Mueller (2010) “Does corporate governance matter in competitive
industries?” Journal of Financial Economics, Vol. 95, No. 3, pp. 312–331.

Goldfarb, Avi and Catherine Tucker (2019) “Digital Economics,” Journal of Economic Literature, Vol. 57,
No. 1, p. 3–43.

Goodman-Bacon, Andrew (2021) “Difference-in-differences with variation in treatment timing,”
Journal of Econometrics, Vol. 225, No. 2, pp. 254–277.

Gormley, Todd A. and David A. Matsa (2011) “Growing Out of Trouble? Corporate Responses to
Liability Risk,” The Review of Financial Studies, Vol. 24, No. 8, pp. 2781–2821.

Gourio, François and Leena Rudanko (2014) “Can Intangible Capital Explain Cyclical Movements in
the Labor Wedge?” American Economic Review, Vol. 104, No. 5, p. 183–88.

Grossman, Sanford J. and Joseph E. Stiglitz (1980) “On the Impossibility of Informationally Efficient
Markets,” The American Economic Review, Vol. 70, No. 3, pp. 393–408.

Gârleanu, Nicolae and Lasse Heje Pedersen (2018) “Efficiently Inefficient Markets for Assets and Asset
Management,” The Journal of Finance, Vol. 73, No. 4, pp. 1663–1712.

Gómez, Juan-Pedro, Melissa Porras Prado, and Rafael Zambrana (2024) “Capital Commitment and
Performance: The Role of Mutual Fund Charges,” Journal of Financial and Quantitative Analysis, Vol.
59, No. 2, p. 727–758.

Harris, Lawrence E., Samuel M. Hartzmark, and David H. Solomon (2015) “Juicing the dividend
yield: Mutual funds and the demand for dividends,” Journal of Financial Economics, Vol. 116, No. 3,
pp. 433–451.

Hartzmark, Samuel M. and Abigail B. Sussman (2019) “Do Investors Value Sustainability? A Natural
Experiment Examining Ranking and Fund Flows,” The Journal of Finance, Vol. 74, No. 6, pp.
2789–2837.

He, Bianca, Lauren Mostrom, and Amir Sufi (2024) “Investing in Customer Capital,” No. 33171.

Hoberg, Gerard and EkaterinaNeretina (2024) “Do TradeAssociationsMatter to Corporate Strategies?”
Working paper.

Hoberg, Gerard and Gordon Phillips (2016) “Text-Based Network Industries and Endogenous Product
Differentiation,” Journal of Political Economy, Vol. 124, No. 5, pp. 1423–1465.

Hoberg, Gerard, Kumar Nitin, and Nagpurnanand Prabhala (2017) “Mutual Fund Competition,
Managerial Skill, and Alpha Persistence,” The Review of Financial Studies, Vol. 31, No. 5, pp.
1896–1929.

Hong, Claire Yurong, Xiaomeng Lu, and Jun Pan (2024) “Fintech Platforms and Mutual Fund
Distribution,”Management Science.

42



Hortaçsu, Ali and Chad Syverson (2004) “Product Differentiation, Search Costs, and Competition
in the Mutual Fund Industry: A Case Study of S&P 500 Index Funds,” The Quarterly Journal of
Economics, Vol. 119, No. 2, pp. 403–456.

Ibert, Markus, Ron Kaniel, Stĳn Van Nieuwerburgh, and Roine Vestman (2017) “Are Mutual Fund
Managers Paid for Investment Skill?,” The Review of Financial Studies, Vol. 31, No. 2, pp. 715–772.

Jones, Charles I. and Christopher Tonetti (2020) “Nonrivalry and the Economics of Data,” American
Economic Review, Vol. 110, No. 9, pp. 2819–58, September.

Kacperczyk, Marcin, Clemens Sialm, and Lu Zheng (2008) “Unobserved Actions of Mutual Funds,”
The Review of Financial Studies, Vol. 21, No. 6, p. 2379–2416.

Kostovetsky, Leonard and Alberto Manconi (2018) “How Much Labor Do You Need to Manage
Capital?”.

Kostovetsky, Leonard and Jerold B. Warner (2020) “Measuring Innovation and Product Differentiation:
Evidence from Mutual Funds,” Journal of Finance, Vol. 75, No. 2, pp. 779–823.

Lancaster, Kevin J. (1966) “A New Approach to Consumer Theory,” The Journal of Political Economy,,
Vol. 74, No. 2, pp. 132–157.

Lerner, Josh and Peter Tufano (2011) “The Consequences of Financial Innovation: A Counterfactual
Research Agenda,” Annual Review of Financial Economics, Vol. 3.

Loseto, Marco and Federico Mainardi (2023) “Oligopolistic Competition, Fund Proliferation, and
Asset Prices.”

Lou, Dong (2012) “A Flow-Based Explanation for Return Predictability,” The Review of Financial Studies,
Vol. 25, No. 12, pp. 3457–3489.

MacKinnon, James G., Morten Ørregaard Nielsen, and Matthew D. Webb (2023) “Cluster-robust
inference: A guide to empirical practice,” Journal of Econometrics, Vol. 232, No. 2, pp. 272–299.

Martin, Ian W.R. and Stefan Nagel (2022) “Market efficiency in the age of big data,” Journal of Financial
Economics, Vol. 145, No. 1, pp. 154–177.

Massa, Massimo (2003) “How do family strategies affect fund performance? When performance-
maximization is not the only game in town,” Journal of Financial Economics, Vol. 67, No. 2, pp.
249–304.

Menzio, Guido (2023) “Optimal Product Design: Implications for Competition and Growth Under
Declining Search Frictions,” Econometrica, Vol. 91, No. 2, pp. 605–639.

Mihet, Roxana (2022) “Financial Information Technology and the Inequality Gap,” Swiss Finance
Institute Research Paper, No. 21-04.

Moretti, Enrico (2004) “Workers’ Education, Spillovers, and Productivity: Evidence from Plant-Level
Production Functions,” American Economic Review, Vol. 94, No. 3, p. 656–690.

(2010) “Local Multipliers,” American Economic Review, Vol. 100, No. 2, p. 373–77.

43



Morlacco, Monica and David Zeke (2021) “Monetary policy, customer capital, and market power,”
Journal of Monetary Economics, Vol. 121, pp. 116–134.

Mullainathan, Sendhil, Joshua Schwartzstein, and Andrei Shleifer (2008) “Coarse Thinking and
Persuasion*,” The Quarterly Journal of Economics, Vol. 123, No. 2, pp. 577–619.

Mullally, Kevin and Andrea Rossi (2025) “Moving the Goalposts? Mutual Fund Benchmark Changes
and Relative Performance Manipulation,” The Review of Financial Studies, Vol. 38, No. 4, p. 1067–1119.

Nike (2025) “Nike Cookie Policy,”Technical report.

Obizhaeva, Olga (2024) “Does Search Engine Visibility Help ETFs Attract Flows?” Working paper.

Pellegrino, Bruno (2024) “Product Differentiation and Oligopoly: a Network Approach,” American
Economic Review (forthcoming).

Previtero, Alessandro and Ran Xing (2025) “Beyond Performance: Mutual Funds, Non-Alpha Services,
and the Value of Financial Advisors,”Working Paper.

Pástor, Luboš, Robert F. Stambaugh, and LucianA. Taylor (2015) “Scale and skill in activemanagement,”
Journal of Financial Economics, Vol. 116, No. 1, pp. 23–45.

(2022) “Dissecting green returns,” Journal of Financial Economics, Vol. 146, No. 2, pp. 403–424.

Reuter, Jonathan and Eric Zitzewitz (2006) “Do Ads Influence Editors? Advertising and Bias in the
Financial Media,” The Quarterly Journal of Economics, Vol. 121, No. 1, pp. 197–227.

Roberts, Michael R. and Toni M. Whited (2013) “Chapter 7 - Endogeneity in Empirical Corporate
Finance1,” Vol. 2 of Handbook of the Economics of Finance: Elsevier, pp. 493–572.

Roldan-Blanco, Pau and Sonia Gilbukh (2021) “Firm dynamics and pricing under customer capital
accumulation,” Journal of Monetary Economics, Vol. 118, pp. 99–119.

Rosenthal, Stuart S. and William C. Strange (2004) “Evidence on the Nature and Sources of Agglomer-
ation Economies,” Handbook of Regional and Urban Economics, Vol. 4, pp. 2119–2171.

Rossi, Alberto G. and Stephen Utkus (2024) “The diversification and welfare effects of robo-advising,”
Journal of Financial Economics, Vol. 157.

Roussanov, Nikolai, Hongxun Ruan, and Yanhao Wei (2020) “Marketing Mutual Funds,” The Review
of Financial Studies, Vol. 34, No. 6, pp. 3045–3094.

Salop, Steven C. (1979) “Monopolistic Competition with Outside Goods,” The Bell Journal of Economics,
Vol. 10, No. 1, pp. 141–156.

Sheng, Jinfei, Zheng Sun, Baozhong Yang, and Alan L. Zhang (2025) “Generative AI and Asset
Management,”Working paper.

Shive, Sophie and Hayong Yun (2013) “Are mutual funds sitting ducks?” Journal of Financial Economics,
Vol. 107, No. 1, pp. 220–237.

Sirri, Erik R. and Peter Tufano (1998) “Costly Search and Mutual Fund Flows,” The Journal of Finance,
Vol. 53, No. 5, pp. 1589–1622.

44



Stock, James H. and Motohiro Yogo (2005) Testing for Weak Instruments in Linear IV Regression, p.
80–108: Cambridge University Press.

Sun, Yang (2021) “Index Fund Entry and Financial Product Market Competition,”Management Science,
Vol. 67, No. 1, pp. 500–523.

Thakor, Anjan V. (2020) “Fintech and banking: What do we know?” Journal of Financial Intermediation,
Vol. 41.

van Binsbergen, Jules H, Xiao Han, and Alejandro Lopez-Lira (2022) “Man versus Machine Learning:
The Term Structure of Earnings Expectations and Conditional Biases,” The Review of Financial
Studies, Vol. 36, No. 6, pp. 2361–2396.

Veldkamp, Laura (2011) Information Choice in Macroeconomics and Finance: Princeton University Press.

Vokata, Petra (2021) “Engineering lemons,” Journal of Financial Economics, Vol. 142, No. 2, pp. 737–755.

(2025) “Juicing the Coupon Yield: How Banks Extract Rents from Behavioral Biases,” Fisher
College of Business Working Paper, No. 2025-22.

45



2005 2010 2015 2020
0

500

1,000

1,500

2,000

2,500

3,000

15%

30%

45%

60%

75%

90%

 

Figure 1: Funds and Data Technology adoption. This figure shows the adoption of data technologies aimed
to capture visitors data, on funds’ websites. The data are from BuiltWith, which detects the installation and
removal of various technologies by analyzing webpage code. See Section 3.2 for details on data technologies.
The blue line (left axis) represents the number of funds with at least one data technology in place for each
month of the sample period. The red line (right axis) shows the percentage of funds adopting data technologies
relative to the total number of funds in a given month.
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Figure 2: The Dynamic Effect of Data Technologies on Fund Flows. This figure shows results for the stacked
difference-in-differences regression where the dependent variable is the one-month-ahead fund flow. Each
point represents the estimated coefficient on the treatment group interaction with each month before/after
data technology adoption. The treatment is a dummy equal to one if a fund 8 has a data technology in place at
month C (Data8 ,C). The fund-month control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1
fees, and alpha with respect to Vanguard index funds (Berk and van Binsbergen, 2015) in month C. Regression
include fund and category×month fixed effects, and the gray area represent the 95% confidence interval for
the coefficient estimates. The month just before data technology adoption (-1) is the excluded category in the
regression, and is reported as zero in the figure. The monthly sample include equity mutual funds and ETFs
from March 1993 to December 2023.

47



<25% [25−50)% [50−75)% [75−100)%
Competition as of adoption date (γc, t)

−0.40

−0.20

0.00

0.20

0.40

0.60

C
oe
ff
.
E
st
im

at
es

Figure 3: Effect of Competition within Fund-Category. This figure shows results for difference-in-differences
coefficients across different values of competition (�2,C) as of data technology adoption. The competition
coefficient �2,C is built following equation (6), and it captures the fraction of funds with data technologies in
place within fund category-month. Each bar represents a level of competition as of adoption date (e.g., the first
bar represents all fund managers installing their first data technology when less then 25% of funds within its
own fund-category have a data technology already installed). Each vertical line represents the 95% confidence
interval. The specification is the same as the main specification in equation (2). All regressions include fund
and time fixed effects, and controls: fund’s size (;>6TNA), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in
month C.
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Figure 4: Decreasing Marginal Benefits from Data. This figure shows results for difference-in-differences
coefficients across different bins for the number of data technologies installed. Each bar represents a bin in
which fund 8 has  data technologies as of month C, with  = {0; 1; 2; [3, 10]; [11, 15];> 15}. Each vertical
line represents the 95% confidence interval. The solid line represents a concave fit, estimated with an OLS
regression H = 
 + �;>6(1 +  ), The specification is the same as the main specification in equation (2). All
regressions include fund and time fixed effects, and controls: fund’s size (;>6TNA), (;>6) age, turnover, 12b-1
fees, and CAPM alpha in month C.
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Figure 5: Placebo tests. This figure shows results from placebo tests on technologies different from data
technologies. Each horizontal line represents the 95% confidence interval for tests replacing data technologies
with one of the following (placebo) technologies: Network (Content Delivery Network), Server, JavaScript,
Copyright, Feeds, and Ads. The specification is the same as the main results in Table 3. The dependent variable
is the one-month-ahead fund flow. The confidence interval refers to the coefficient on a dummy equal to one if
fund 8 has a placebo technology of the respective type in place at month C; i.e., analogous to � in Equation (2).
All regressions include fund and time fixed effects, and controls: fund’s size (;>6AUM), (;>6) age, turnover,
and CAPM alpha in month C.
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obs. mean sd p5 p25 p50 p75 p95

AUM ($M) 947,079 1,177.59 2,882.62 8.69 54.93 218.65 831.99 5,821.95

Expense Ratio (%) 947,079 1.12 0.54 0.17 0.81 1.11 1.45 2.06

12b-1 Fees (%) 947,079 0.28 0.24 0.00 0.05 0.25 0.40 0.75

Flows (%) 947,079 -0.15 5.64 -5.96 -1.80 -0.65 0.78 6.98

Turnover Ratio 947,079 0.79 1.01 0.06 0.25 0.51 0.95 2.31

Age (Years) 947,079 13.15 8.84 2.58 6.00 11.08 18.75 30.17

Raw Returns 947,079 0.01 0.05 -0.08 -0.02 0.01 0.04 0.08

CAPM Alpha 947,079 -0.02 0.14 -0.30 -0.08 -0.01 0.05 0.21

#. of �0C0 )42ℎ. 947,079 1.26 2.52 0.00 0.00 0.00 1.00 7.00

Data 947,079 0.36 0.48 0.00 0.00 0.00 1.00 1.00

Table 1: Summary Statistics: This table reports summary statistics for the full sample. For each variable, the
table shows the number of available observations (>1B,), the mean (<40=), the standard deviation (B3), the 5th
(?5), 25th (?25), 50th (?50), 75th (?75), and the 95th (?95) percentiles. AUM is inflation adjusted in January
2000 $ million. Expense Ratio, 12b-1 Fees, and Flows are in %; e.g., the average fund flow in the sample is
-0.12% monthly. The variable #. of �0C0 )42ℎ. represents the total number of data technologies installed on
the fund’s website in a given month, the variable Data is a dummy equal to 1 if the fund-month observation
has at least one data technology installed. The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2023.
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Installation %
Data Technology Name (in 2023) Description

Google Analytics 58.25 Users Tracking and Analytics

LinkedIn Insights 38.00 Social Media Tracking and Analytics

Adobe Analytics 37.20 Users Tracking and Analytics

Facebook Pixel 27.88 Social Media Tracking and Analytics

Omniture Test & Target 24.47 A/B Testing

RapLeaf 23.06 Users Tracking

LiveRamp 21.62 Data Connectivity Platform

Twitter Analytics 17.25 Social Media Tracking and Analytics

Bing Universal Event Tracking 16.89 Users Tracking and Analytics

mPulse 13.89 Real Time Customer Experience

Yahoo Web Analytics 12.58 Users Tracking and Analytics

Google Optimize 360 7.01 A/B Testing

Crazy Egg 6.94 Track and Visualize User Interaction

iPerceptions 6.31 Analyze Customer Feedback

Hotjar 6.05 Users Tracking and Analytics

Table 2: Main Data Technologies: This table reports the main data technologies installed on funds’ websites, as
of December 2023. This technologies are allow to collect and process website visitors’ data. The second column
shows the percentage of funds having the technology installed on its website with respect to the total number
of funds, as of December 2023. The third column reports a short description of the technology’s features.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.116*** 0.101** 0.142*** 0.130***
(0.044) (0.043) (0.049) (0.044)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.188 0.188 0.188 0.188
Outcome SE 6.266 6.266 6.266 6.266

Obs. 947,079 946,733 890,802 873,141
Adj. '2 0.094 0.126 0.094 0.126

Table 3: Fund Flows and Data Technologies: This table shows results of panel regression in which the
dependent variable is the one-month-ahead fund flow. The regressors are a dummy equal to one if a fund 8
has a data technology in place at month C (Data8 ,C), and controls for fund-month characteristics (omitted for
brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s size (;>6AUM),
(;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. Columns (1) and (2) report results for baseline
OLS, while columns (3) and (4) show results using difference-in-differences estimator robust to staggered
treatment concerns (Gardner et al., 2024). The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2023. All standard errors are two-way clustered by fund and month (in parentheses).
*, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Inflows8 ,C+1 (%) Outflows8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.457*** 0.419*** 0.240 0.120
(0.052) (0.099) (0.152) (0.104)

Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 5.642 5.642 5.343 5.343
Outcome SE 15.279 15.279 15.972 15.972

Obs. 155,274 152,095 155,275 152,096
Adj. '2 0.673 0.695 0.637 0.646

Table 4: Fund Inflows, Outflows and Data Technologies: This table shows results of panel regression on fund
inflows and outflows separately, robust to concerns in staggered difference-in-differences (see Goodman-Bacon,
2021). I estimate equation (2) substituting the LHS with fund inflows and outflows separately. The dependent
variable is the one-month-ahead fund inflows in columns (1) and (2), and fund outflows in columns (3) and (4).
All columns show estimates using difference-in-differences estimator robust to staggered treatment concerns
(Gardner et al., 2024). The regressors are a dummy equal to one if a fund 8 has a data technology in place at
month C (Data8 ,C), and controls for fund-month characteristics (omitted for brevity). See Section 3.2 for details
on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees,
and CAPM alpha in month C. The monthly sample is from January 2006 to June 2018. All standard errors are
two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the 10%,
5% and 1% respectively.
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Expense Ratio8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.017*** 0.016*** 0.037*** 0.034***
(0.003) (0.003) (0.005) (0.005)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 1.133 1.133 1.133 1.133
Outcome SE 0.540 0.540 0.540 0.540

Obs. 947,079 946,510 890,802 873,141
Adj. '2 0.922 0.926 0.922 0.926

Table 5: Expense Ratio and Data Technologies: This table shows results of panel regression in which the
dependent variable is the one-month-ahead expense ratio. The regressors are a dummy equal to one if a fund 8
has a data technology in place at month C (Data8 ,C), and controls for fund-month characteristics (omitted for
brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s size (;>6AUM),
(;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. Columns (1) and (2) report results for baseline
OLS, while columns (3) and (4) show results using difference-in-differences estimator robust to staggered
treatment concerns (Gardner et al., 2024). The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2023. All standard errors are two-way clustered by fund and month (in parentheses).
*, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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First-stage
Fund Flows8 ,2,H+1 (%) Expense Ratio8 ,2,H+1 (%) Data8 ,2,H
(1) (2) (3) (4) (5) (6)

Data8 ,2,H 1.490** 1.792** 0.031*** 0.032***
(0.732) (0.833) (0.009) (0.010)

Data Analytics Grad.2,H 0.011*** 0.011***
(0.003) (0.003)

Controls X X X X X X
Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean -1.723 -1.723 1.084 1.084 0.430 0.430
Outcome SE 17.397 17.397 0.527 0.527 0.495 0.495

Obs. 40,485 39,531 40,485 39,531 40,485 39,531
Adj. '2 0.326 0.313 0.659 0.359 0.633 0.638
F-Stat 22.522 29.268 22.522 29.268

Table 6: IV Estimates: Local Supply of Data Analytics Graduates: This table shows results for the instrumental variable estimates where the instrument
is the local supply of graduates in data analytics-related fields. I instrument the adoption choice of fund 8 in commuting zone (CBSA) 2 and year H, with
the number of graduates in data analytics, statistics, and computer science from universities within a fund’s CBSA. Annual university graduates are from
the Integrated Postsecondary Education Data System (IPEDS) and include bachelor’s, master’s, and Ph.D. degrees. See Appendix C for the detailed list of
Core Instructional Programs (CIPs) in data analytics, statistics, and computer science. Columns (5) and (6) show results for the first stage. Columns (1)-(2)
and columns (3)-(4) report results for annual fund flows and fees, respectively. All estimates use difference-in-differences estimator robust to staggered
treatment concerns (Gardner et al., 2024). The regressors are a dummy equal to one if a fund 8 in commuting zone 2 has a data technology in place in year
H (Data8 ,2,H), and controls for fund-year characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The control variables include
a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in year H. All variables are at the annual frequency. The sample period is from
2000 to 2023. All standard errors are two-way clustered by fund and year (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and
1% respectively.
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Fund Flows8 ,C+1 (%)

I8 : Tenure of Adoption N. of Data Tech.

(1) (2) (3) (4) (5) (6)

Data8 ,C 0.590*** 0.606*** 0.619*** 0.672*** 0.623*** 0.643***
(0.126) (0.126) (0.143) (0.146) (0.138) (0.139)

Data8 ,C × P>BCC 0.260** 0.313*** 0.030 0.001 0.062 0.119
(0.109) (0.109) (0.392) (0.376) (0.143) (0.136)

Data8 ,C × P>BCC × I8 0.051* 0.077** 0.109*** 0.113***
(0.029) (0.032) (0.042) (0.039)

Controls X X X X X X
Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean 0.141 0.141 0.141 0.141 0.141 0.141
Outcome SE 6.308 6.308 6.308 6.308 6.308 6.308

Obs. 770,276 769,423 584,488 583,837 689,466 688,820
Adj. '2 0.107 0.139 0.094 0.132 0.101 0.133

Table 7: Fund Flows and Data Technologies after TensorFlow Release: This table shows results of OLS
panel regression in which the dependent variable is the one-month-ahead fund flow. Columns (1) and (2)
follow specification in equation (3), while columns (3) to (6) follow (4). In columns (3) and (4) the continuous
treatment I8 is the (;>6) number of months between the first data technology adoption and TensorFlow’s
release. Columns (5) and (6) use the number of data technologies installed as of TensorFlow’s release, as
continuous treatment I8 . Data8 ,C is a dummy equal to one if fund 8 has a data technology in place at month C.
See Section 3.2 for details on data technologies. The fund-month control variables (omitted for brevity) include
a fund’s size (;>6AUM), (;>6) age, turnover, CAPM alpha, 12b-1 fees, and the coefficient of data competition
(equation (6)) in month C. The monthly sample include equity mutual funds and ETFs from March 1993 to
December 2023, which did not adopt a data technology after June 2015 (i.e., six-months before TensorFlow’s
release). All standard errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote
statistical significance at the 10%, 5% and 1% respectively.
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Share Class Flows9 ,8 ,C+1 (%)

Only Only
Retail Institutional

(1) (2) (3) (4)

Data8 ,C 0.059 0.047 0.120** -0.019
(0.085) (0.084) (0.052) (0.097)

Data8 ,C × Retail 0.200*** 0.175**
(0.071) (0.069)

Controls X X X X
Fund FE X X X X
Time FE X × X X
Category×Time FE × X × ×
Outcome mean 0.631 0.631 0.383 0.691
Outcome SE 10.502 10.502 7.896 8.353

Obs. 799,667 798,719 334,280 150,731
Adj. '2 0.082 0.092 0.123 0.091

Table 8: Retail and Institutional Share Classes: This table shows results of panel regression in which the
dependent variable is the one-month-ahead flow for share class 9 of fund 8. The regressors are a dummy equal
to one if fund 8 has a data technology in place at month C (Data8 ,C) interacted with the share class’ 9 type (retail
or institutional), 12b-1 fees, and controls for share class-month characteristics (omitted for brevity). See Section
3.2 for details on data technologies. Columns (3) use only retail share classes observations, while columns
(4) only institutional share classes observations. The control variables include a share class’ (;>6) AUM, (;>6)
age, flows, turnover, and CAPM alpha in month C. The monthly sample is from March 1993 to December 2023.
All standard errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical
significance at the 10%, 5% and 1% respectively.
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F8 ,@(cash) (%) Amihud8 ,@+1 (%) Redemption Fee

(1) (2) (3) (4) (5) (6) (7) (8)

�/%8 ,@ -0.379*** -0.289* -0.226 -0.123
(0.131) (0.172) (0.139) (0.185)

Data8 ,@ × �/%8 ,@ -0.585** -0.648**
(0.236) (0.324)

Data8 ,@ 0.001 0.001 0.405*** 0.362*** -0.017*** -0.016*
(0.001) (0.001) (0.007) (0.094) (0.006) (0.009)

Controls X X X X X X X X
Fund FE X X X X X X X X
Time FE X × X × X × X ×
Category×Time FE × X × X × X × X

Outcome mean 4.355 4.355 4.355 4.355 0.448 0.448 0.240 0.240
Outcome SE 12.226 12.226 12.226 12.226 3.946 3.946 0.427 0.427

Obs. 209,868 209,720 209,868 209,720 158,027 154,927 254,359 251,328
Adj. '2 0.552 0.555 0.552 0.555 0.310 0.330 0.745 0.756

Table 9: Liquidity Management and Data Technology: This table shows results of panel regression in which the dependent variable is the quarterly
fund’s cash holdings (columns (1) to (4)), the portfolio Amihid illiquidity ratio (columns (5)-(6)), and the likelihood that the fund charges redemption fees
to investors (columns (7)-(8)). In columns (1) to (4) the regressors are the fund’s portfolio dividend-price ratio (�/%8 ,@), an interaction term with a dummy
equal to one if a fund 8 has a data technology in place in quarter @ (Data 5 ,C), and controls for fund-quarter characteristics. See Section 3.2 for details on
data technologies. The fund-quarter control variables (omitted for brevity) include a fund’s size (;>6AUM), (;>6) age, turnover, CAPM alpha, and 12b-1
fees. Portfolio holdings data are from Thomson Reuters (s12). The quarterly sample is from 2004Q2 to 2023Q4. All standard errors are two-way clustered
by fund and quarter (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%) Expense Ratio8 ,C+1 (%)

Active Passive Active Passive

(1) (2) (3) (4) (5) (6) (6) (8)

Data8 ,C 0.138*** 0.113** 0.578*** 1.160** 0.034*** 0.035*** 0.024** 0.044**
(0.053) (0.051) (0.210) (0.517) (0.006) (0.006) (0.011) (0.020)

Controls X X X X X X X X
Fund FE X X X X X X X X
Time FE X × X × X × X ×
Category×Time FE × X × X × X × X

Outcome mean 0.086 0.086 0.976 0.976 1.186 1.186 0.726 0.726
Outcome SE 5.745 5.745 9.311 9.311 0.504 0.504 0.633 0.633

Obs. 726,304 712,701 84,571 71,759 726,304 712,701 84,572 71,760
Adj. '2 0.111 0.148 0.056 0.081 0.899 0.904 0.973 0.975

Table 10: Active and Passive Funds: This table shows results of panel regression in which the dependent
variable is the one-month-ahead flow (columns (1) to (4)) or expense ratio (columns (5) to (8)). In columns (1),
(2), (5), and (6) I only include active funds, while columns (3), (4), (7), and (8) only passive funds —including
ETFs. All estimates use difference-in-differences estimator robust to staggered treatment concerns (Gardner
et al., 2024). The regressors are a dummy equal to one if a fund 8 in commuting zone 2 has a data technology in
place in year H (Data8 ,2,H), and controls for fund-year characteristics (omitted for brevity). See Section 3.2 for
details on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1
fees, and CAPM alpha in year H. The monthly sample include equity mutual funds and ETFs from March 1993
to December 2023. All standard errors are two-way clustered by fund and month (in parentheses). *, **, and ***
denote statistical significance at the 10%, 5% and 1% respectively.
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12b-1 Captive Sales8 ,C+1 Marketing-Sales Exp.8 ,C+1

(1) (2) (3) (4)

Data8 ,C 0.001*** 0.001*** 0.007*** 0.008***
(0.000) (0.000) (0.002) (0.001)

Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.003 0.003 0.119 0.119
Outcome SE 0.015 0.015 0.142 0.142

Obs. 180,723 178,046 252,207 249,139
Adj. '2 0.760 0.761 0.734 0.738

Table 11: Captive Retail Sales Force: This table shows results of panel regression on funds’ captive retail sales
forces, robust to concerns in staggered difference-in-differences (see Goodman-Bacon, 2021). The dependent
variable is the fund’s one-month-ahead payment to captive retail sales force from 12b-1 fees, over its AUM
(columns (1)-(2)). While in columns (3)-(4) the dependent variable is the fund’s total marketing and sales
costs over its AUM. All columns show estimates using difference-in-differences estimator robust to staggered
treatment concerns (Gardner et al., 2024). The regressors are a dummy equal to one if a fund 8 has a data
technology in place at month C (Data8 ,C), and controls for fund-month characteristics (omitted for brevity). See
Section 3.2 for details on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age,
turnover, 12b-1 fees, and CAPM alpha in month C. The monthly sample is from January 2006 to June 2018.
All standard errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical
significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4)

Marketing-Sales Exp.8 ,C 0.188*** 0.152** 0.103 0.061
(0.062) (0.058) (0.065) (0.061)

Marketing-Sales Exp.8 ,C× Data8 ,C 0.223*** 0.234***
(0.053) (0.053)

Data8 ,C 2.505*** 2.523***
(0.595) (0.591)

Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.266 0.266 0.266 0.266
Outcome SE 6.529 6.529 6.529 6.529

Obs. 35,358 34,507 35,358 34,507
Adj. '2 0.195 0.230 0.197 0.232

Table 12: Marketing Expenditures and Fund Flows: This table shows results of panel regression on funds’
marketing and sales efforts after adoption of a data analytics technology. The dependent variable is the
fund’s cumulative six-months-ahead fund flows. The regressors are a fund’s (;>6) total marketing and sales
expenditures, a dummy equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), the
interaction between Data8 ,C and (;>6) marketing expenditures, and controls for fund-month characteristics
(omitted for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s
size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. The semi-annual sample is
from January 2006 to June 2018. All standard errors are two-way clustered by fund and calendar semester (in
parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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FRE Index deHaan et al. (2021) Second-person Mention Themes

(1) (2) (3) (4) (5) (6) (7) (8)

Data8 ,H 0.841*** 0.781*** -1.042*** -1.063*** 0.018*** 0.015*** 0.021* 0.016**
(0.219) (0.156) (0.077) (0.142) (0.002) (0.004) (0.011) (0.008)

Controls X X X X X X X X
Fund FE X X X X X X X X
Time FE X × X × X × X ×
Category×Time FE × X × X × X × X

Outcome mean 22.093 22.093 27.508 27.508 0.051 0.051 0.259 0.259
Outcome SE 93.263 93.263 88.601 88.601 0.223 0.223 0.629 0.629

Obs. 111,000 98,345 101,695 98,347 101,694 98,343 111,004 108,374
Adj. '2 0.155 0.155 0.152 0.149 0.353 0.357 0.417 0.417

Table 13: Text Analysis on Fund Prospectuses: This table shows results of panel regression in which the dependent variables are from textual analysis of
fund prospectuses. Columns (1)-(2) use the Flesch Reading Ease (FRE) index (Flesch, 1948), columns (3)-(4) report results for the average words per
sentence in the prospectus deHaan et al. (2021), columns (5)-(6) for the frequency of second-person pronouns (e.g., “you”, “your”), and columns (7)-(8) for
the occurrency of words related to themes (Ben-David et al., 2022). I refer to Appendix D for details on the construction of text-analysis measures. The
fund-year control variables (omitted for brevity) include a fund’s size (;>6AUM), (;>6) age, turnover, CAPM alpha, and 12b-1 fees. Fund prospectuses
are from SEC’s EDGAR (see Appendix B). The annual sample is from 2006 to 2023. All standard errors are two-way clustered by fund and year (in
parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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3̄ iVol Active Share

(1) (2) (3) (4) (5) (6)

Data8 ,@ 0.004* 0.001 -0.001* -0.001* -0.004* -0.003
(0.002) (0.003) (0.000) (0.000) (0.002) (0.002)

Controls X X X X X X
Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean -1.723 -1.723 1.084 1.084 0.430 0.430
Outcome SE 17.397 17.397 0.527 0.527 0.495 0.495

Obs. 158,133 155,034 158,133 155,034 158,132 155,033
Adj. '2 0.784 0.817 0.789 0.829 0.602 0.621

Table 14: Product Differentiation for Existing Funds: This table shows results of panel regression in which the dependent variables are measures of
funds product differentiation based on portfolio holdings. Columns (1)-(2) use the holdings distance measure of Hoberg et al. (2017), columns (3)-(4)
report results for the portfolio idiosyncratic volatility, and columns (5)-(6) for active share (Cremers and Petajisto, 2009). The fund-quarter control variables
(omitted for brevity) include a fund’s size (;>6AUM), (;>6) age, turnover, CAPM alpha, and 12b-1 fees. Holdings data are from Thomson Reuters (s12)
(see Appendix B). The quarterly sample is from 2004Q2 to 2023Q4. All standard errors are two-way clustered by fund and quarter (in parentheses). *, **,
and *** denote statistical significance at the 10%, 5% and 1% respectively.
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;>6(N. of Funds) 5 ,C+1 Thematic words in PIS: All AI & Crypto ESG

(1) (2) (3) (4) (5) (6) (7) (8)

Data 5 ,C 0.020** 0.034** 0.104*** 0.071*** 0.005*** 0.002 0.085*** 0.055***
(0.009) (0.017) (0.012) (0.013) (0.001) (0.002) (0.011) (0.012)

Fund Family FE X X × × × × × ×
Time FE X X × X × X × X

Outcome mean 1.485 1.485 0.157 0.157 0.004 0.004 0.115 0.115
Outcome SE 1.350 1.350 0.438 0.438 0.055 0.055 0.402 0.402

Obs. 124,560 124,560 5,568 5,568 5,568 5,568 5,568 5,568
Adj. '2 0.885 0.914 0.013 0.047 0.002 0.009 0.011 0.045

Table 15: Launch of New Funds: This table shows results of panel regression in which the dependent variable is the number of funds offered by fund
family 5 in month C + 1 in columns (1)-(2). The regressors are a dummy equal to one if at least one fund within family 5 has a data technology in place at
month C (Data 5 ,C), and the (;>6) fund family age. See Section 3.2 for details on data technologies. In columns (3) to (8), I only use observations on the first
prospectus released by all newly launched funds in the sample. Columns (3) to (8) regress mentions of words related to retail-oriented themes such as
AI, ESG, Cannabis, cybersecurity, political values, space, and video games in the newly launched funds’ Principal Investment Strategy (PIS) of their
prospectuses. I detail all words I use to identify these themes in Appendix D. Columns (3)-(4) consider all thematic words. Columns (5)-(6) consider only
AI and Crypto-related words, while columns (7)-(8) uses mentions of ESG words in new funds’ prospectuses. All standard errors are two-way clustered
by fund family and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Appendix

A Economic Framework

A.1 Equilibrium and Main Predictions

To illustrate the main mechanism, I develop a tractable framework of fund flows and fees

in a competitive, rational market. The setup builds on Berk and van Binsbergen (2015). I

introduce the assumption that managers compete not only on performance, but also on how

well they understand customer preferences. I then derive the equilibrium implications for

funds’ assets under management (AUM) and the split of rents (from data) between asset

managers and investors.

The model features a continuum of investors who allocate their wealth to a measure-one

continuum of asset managers, which I index by 8. Time is discrete and infinite. Each manager

8 at time C has AUM @8 ,C , and charges a per-dollar fee 58 ,C . Fund managers are Bayesian.

I assume investors have (homogenous) non-pecuniary preferences �C that follow an AR(1)

process:

�C+1 = ��C + �C+1, � ≤ 1

with �C+1 ∼ N
(
0, �−1

�

)
. �C may capture distribution channel preferences, such as whether

an investor prefer to buy product directly vs. trough financial adviser, or communication

frequency (daily vs. monthly communication). It may also capture a non-pecuniary

preference for assets with particular characteristics. For instance, some investors might have

non-pecuniary preference to hold green stocks (Hartzmark and Sussman, 2019), politically

exposed stocks, or specific themes (Ben-David et al., 2022). Crucially, asset managers do not

observe �C directly. Instead, each manager 8 receives a noisy unbiased signal B 9 ,C = �C + � 9 ,C ,
with � 9 ,C ∼ N

(
0, �−1

B

)
. Where � 9 ,C are i.i.d and independent of �C . The signal precision is �B .

A fraction � ∈ (0, 1] of asset managers, called “data-managers”, observe an additional

independent signal from analyzing customers’ data: B�,C = �C + ��,C , with ��,C ∼ N
(
0, �−1

�

)
.

� stays for data-managers. Data-managers thus combine two independent signals and have

total precision �B + �� . I treat � as given here, and endogenize it in Section A.3.
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Managers update beliefs about �C using standard recursive Bayesian updating (Kalman

filter):
�̂9 ,C+1 = ��̂9 ,C +  9 ,C

(
B 9 ,C − �̂9 ,C

)
 9 ,C = �

�9

Σ̂−1
9 ,C
+ �9

Σ̂9 ,C+1 = �2 1
Σ̂−1
9 ,C
+ �9
+ 1
��
,

(A.1)

where �9 = �B + 1{ 9∈�}�� . I denote �̂C = E[�C |B0, . . . , BC−1] and Σ̂C = V0A[�C |B0, . . . , BC−1] =
E[(�C − �̂C)2].

Following the data economy literature (e.g., Farboodi and Veldkamp, 2020; Abis and

Veldkamp, 2023; Cong et al., 2021), I define a manager’s stock of knowledge as the conditional

precision:

Ω8 ,C = Σ̂
−1
9 ,C = E[(�C − �̂C)

−2]. (A.2)

This stock measure summarizes the total knowledge a manager accumulates about �C by

observing B 9 ,0, B 9 ,1, . . . , B 9 ,C .

Investors derive per-period utility from investing in fund 8 at time C − 1:

TP9 ,C = 0 − 1 · @8 ,C − 58 ,C + � · (�C − �̂9 ,C)−2. (A.3)

The first term, 0 − 1 · @ − 5 , is the same as in Berk and van Binsbergen (2015). Managers

generate gross alpha with decreasing returns to scale (0 − 1 · @) and charge a fee ( 5 ) to

investors holding the fund. The second term is new. Investors gain non-pecuniary utility

from holding funds closer to their preference. The parameter � governs the importance of

this non-pecuniary component. For example, ESG consumers might derive non-pecuniary

utility from buying green-labeled products. If an asset manager recognizes this taste, she can

cater and attract those investors. This second term is what makes data relevant in the model.

Standard neoclassical assumptions hold: investors are rational, markets are competitive,

and managers maximize profits (Berk and Green, 2004; Berk and van Binsbergen, 2015). In

equilibrium, investors supply capital to funds and the expected utility from each fund must
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equal zero:

E[TP9 ,C] = 0, ∀ 9. (A.4)

In this rational competitive market for asset management services, the equilibrium AUM

is proportional to the stock of knowledge about investors’ preference:

@∗9 ,C =
0 + �Ω8 ,C

21
. (A.5)

Asset managers with more data (largerΩ) attract more AUM. Therefore, managers that know

more about investors’ non-pecuniary preferences are larger, all else equal. Equilibrium fund

flows follows directly:

�;>F 9 ,C =
�
21
(Ω8 ,C+1 −Ω8 ,C) =

�
21
ΔΩ8 ,C+1. (A.6)

Thus, managers withmore (absolute) improvement in their stock of knowledgeΔΩC+1 receive

more flows. Data-managers, who crunch customers’ data, attract more flows relative to

traditional managers. This yields hypothesis 1 in the main text.36

Proof. (Hypothesis 1)

The equilibrium condition (A.4) writes:

0 − 1 · @8 ,C − 58 ,C + � · E[(�C − �̂9 ,C)−2] = 0

0 − 1 · @8 ,C − 58 ,C + � ·Ω8 ,C = 0

→ @8 ,C( 58 ,C) =
0 − 58 ,C + � ·Ω8 ,C

1

(A.7)

Where in the second row I usedΩ8 ,C = Σ̂
−1
9 ,C
= E[(�C − �̂C)−2]. The AUM of a fund is a linear

function of the fee it charges. Let now define fund 8 profits at time C as � 9 ,C := @8 ,C · 58 ,C . As

36Equation (A.6) also implies that stronger decreasing returns to scale (DRS) reduce the flow benefit of data.
Appendix Figure E.4 confirms this prediction. I follow the recursive demeaning approach in Pástor, Stambaugh
and Taylor (2015) to estimate fund-specific DRS coefficients as-of adoption of a data technology. Then, I plot
the effect of data technologies on flows for different bins of DRS. As predicted by the theoretical framework, the
relationship between the effect of data on flows, and DRS is monotonic and decreasing. By contrast, equation
(A.8) implies no relationship between data technology and fees. I show this is indeed the case in Appendix
Figure E.5.
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funds a maximize profit:
max � 9 ,C

FOC: 0 =
0 − 2 5 ∗

9 ,C
+ � ·Ω8 ,C

1

5 ∗9 ,C =
0 + � ·Ω8 ,C

2

(A.8)

This optimum is unique and global. The second order condition −2/1 < 0 is always satisfied.

Finally, substituting (A.8) in (A.7) yields the equilibriumAUM (A.5), fromwhich (A.6) follows

directly. �

Hypothesis 2 follows directly from equation (A.7). Profit-maximizing managers charge

higher fees, as they better what customers prefer. This result is akin to firms charging higher

prices for products that elicit higher willingness to pay. Selling specialized products allows

firms to command higher prices (Menzio, 2023), a common result in IO several models (Salop,

1979; Lancaster, 1966; Pellegrino, 2024).

Difference-in-Differences Coefficients. In the main text, I test these hypotheses using

a difference-in-differences specification. The difference-in-differences coefficients can be

interpreted through the lens of this theoretical framework.

Consider two identical funds, � and �, with the same AUM, fees, and knowledge at time

C, soΩ�,C = Ω�,C = ΩC . Assume that at time C+, fund � receives exogenous access to more

precise signals, i.e., it � becomes a data-manager. Manager � now observes two independent

signals with total precision �B + �� , while manager � receive one signal whose precision is

�B . In equilibrium, the two funds receive flows:

�;>F�,C =
�
21
(Ω�,C+1 −ΩC)

�;>F�,C =
�
21
(Ω�,C+1 −ΩC).

The difference-in-differences coefficient on flows, estimated in the sample C ∈ [0, C + )] is:

��8�
�;>FB,C→C+) =

�
21
(Ω�,C+) −Ω�,C+)). (A.9)

Therefore, the more precise the additional signal � receives, the larger is ��8�
�;>FB

. Moreover,
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equation (A.9) predicts that the diff-in-diff coefficient on flows is smaller for funds facing

larger decreasing returns to scale —i.e., funds for which 1 is large. Appendix Figure E.4

confirms that this is the case: ��8�
�;>FB

decreases monotonically with the decreasing returns to

scale parameter 1.

Similarly, the difference-in-differences coefficient on fees is:

��8��44B,C→C+) =
�
2
(Ω�,C+) −Ω�,C+)). (A.10)

Again, a more precise signal from data analytics technologies is associated with a higher

��8�
�44B

. Unlike flows, however, ��8�
�44B

does not depend on decreasing returns to scale. Appendix

Figure E.5 confirms that the effect of data adoption on fees is flat across funds facing different

decreasing returns to scale.

A.2 Value Added

From this theoretical framework, I can follow Berk and van Binsbergen (2015) in defining

the total value added that a fund manager generates as:

+� 9 ,C = @
∗
9 ,C · 5

∗
9 ,C =
(0 + � ·Ω8 ,C)2

41
. (A.11)

Funds with more knowledge about customers’ preference generate higher value added

than otherwise equivalent funds. Importantly, this additional value does not come from

value that funds extract from financial markets. Instead, it arises from better matching the

product they offer to investors’ non-pecuniary preferences.

To show this, I decompose total value added into two components. The first is the

value extracted from financial markets, +���# , equivalent to equation (5) in Berk and van

Binsbergen (2015):

+���#9,C = @∗9 ,C · 

�
9C, =

02 − �2 ·Ω2
8 ,C

41
. (A.12)

The second component is new: the value added from analyzing customers’ data,+���)�.

This term captures the value fund managers create by tailoring products to investor prefer-
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ences:

+���)�9,C =
0� ·Ω8 ,C + �2 ·Ω2

9 ,C

21
. (A.13)

As expected, value added from data increases with a fund’s stock of knowledge. Asset

managers who collect and process customers’ data can better align funds with customers’

taste, generating higher utility for their investors, via a better product match.

The total value added rises with stock of knowledge, but its composition shifts. The share

of value added extracted from financial markets declines with funds’ accumulating more

data. While the share coming from analyzing data grows. As funds rely more and more on

customers’ data, data-driven value added crowds out the value managers generates investing

in financial markets. Figure A.1 illustrates this decomposition as the stock of knowledge

grows.

Stock of Knowledge (Ω)

Va
lu
e
A
dd

ed

Value Added (+�)
Value Added from Financial Markets (+���# )
Value Added from Data Analytics (+���)�)

Figure A.1: Value Added and Stock of Knowledge. The figure shows the value added a fund manager
generates, as its stock of knowledge (data) grows. The black solid line depicts the total value added generated
by an asset manager. The red dotted line shows the value added by extracting value from financial markets,
while the blue dashed line represents the value added by analyzing data.

A fund manager’s incentive to deliver performance declines as its stock of knowledge

grows. Funds’ AUM increases and decreasing returns to scale erode the risk-adjusted
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performance they deliver to investors. Yet, equilibrium AUM continues to rise because

investors allocate more wealth when fund offerings align with their preferences, even absent

alpha. This effect shifts the incentives for fund managers from generating alpha, to selling

products that match investors’ taste. This echoes Ben-David et al. (2022), who show that

thematic ETFs deliver negative risk-adjusted performance after launch, on average.

A.3 Endogenous Choice of Adopting Data Technologies

I next endogenize managers’ choice to adopt a data technology. Before each period C, a

manager can pay a per-period cost 2̄ to acquire a data analytics technology.

Paying this cost grants access to an additional unbiased signal B�,C = �C + ��,C , with

��,C ∼ N
(
0, �−1

�

)
. Managers also differ in skill 0 9 , which is the alpha a manager delivers on

the first dollar invested. Higher 0 9 represents greater skill. Each manager has skill drawn

from 0 9 ∼ N(0̄ , �−1
0 ).

Investors’ utility remains:

TP9 ,C = 0 9 − 1 · @8 ,C − 58 ,C + � · (�C − �̂9 ,C)−2. (A.14)

As before, asset managers filtering better investors’ preference, �C , deliver higher utility all

else equal. Managers who pay 2̄ observe more precise signals, match preferences more

closely, and attract more capital. From equations (A.8) and (A.5), fund manager 8’s optimal

profits are

�∗9 ,C =
(0 9 + � ·Ω8 ,C)2

41
:= �:(0 9) : ∈ {�,)}, (A.15)

where : ∈ {�,)} denotes whether the fund decides to adopt data analytics and being a

“data-manager” (�), or not ()). In equilibrium, the benefit from adoption must equal the

cost 2̄. I first compute the gross profit gain from data analytics is:

��(0 9) − 2̄ =
(0 9 + � ·Ω�

9,C
)2 − (0 9 + � ·Ω)

9,C
)2

41
=

=
�2[(Ω�

9,C
)2 − (Ω)

9,C
)2]

41
+
�(Ω�

9,C
−Ω)

9,C
) · 0 9

21

(A.16)
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The important intuition here is that the (gross) benefits of adoption increase with skill 0 9 .

More skilled managers benefits more from data analytics. However, there exist a threshold

0∗ below which managers do not adopt, because those without enough skills (0 9 < 0∗) earn

too little profits to cover costs 2̄. This threshold is 0∗ such that ��(0∗) − 2̄ = 0. Solving for it,

gives the:

0∗ =
212̄

Ω�
9,C
−Ω)

9,C︸       ︷︷       ︸
cost/benefit

−
Ω�
9,C
+Ω)

9,C

2
, (A.17)

and a manager 8 adopts a technology to analyze customers’ data if 0 9 ≥ 0∗, whereas when

0 9 < 0∗ the manager does not adopt. The first term in equation (A.17) captures cost over

benefit of adopting. If adoption is expensive (high 2̄) or the informational gain is small, no

managers adopt. For instance, this may happen because it is very costly to acquire human

capital trained in data analytics (high 2̄), or because the informational benefit of analyzing

data is too little. On the other hand, when the cost-benefit term is small, many funds will

install data technologies.

The second term reflects pure rents from data. This component comes from the fact that

even low-skilled managers gain profits from analyzing data. To see this, notice that when a

manager has no skill (0 9 = 0), she can still earn positive profits (from data): ��(0) (�·Ω)
2

41 . As a

consequence, the skill threshold 0∗ that justify investment in data analytics is lower when

this pure rent term is large. The equilibrium share of adopters is

� = P{0 9 ≥ 0∗} = 1 −Φ
(
0∗ − 0̄
�−1
0

)
. (A.18)

In Section 4.3.2, I use the local supply of data analytics graduates to instrument adoption

of a data technology. The intuition is that local experts reduce cost of adoption (first term in

(A.17)), as it lowers the threshold 0∗ and raises the share of adopters.
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B Data Appendix

In this Appendix I describe the main dataset construction procedure. I use six main data

sources: (i) CRSP Survivorship-Bias-Free US Mutual Funds data, (ii) FactSet Funds data, (iii)

Morningstar Direct, (iv) BuiltWith for websites’ technology installation/removal dates, (v)

N-SAR regulatory filings, and (vi) mutual funds portfolio holdings from Thomson Reuters

(s12).

B.1 CRSP Mutual Funds

I follow Berk and van Binsbergen (2015) and Pástor, Stambaugh and Taylor (2015)

procedures as closely as possible. I start from the raw CRSP Survivorship-Bias-Free US

Mutual Funds monthly data. Each observation in this dataset identifies a fund’s share class

(2AB?_ 5 D=3=>) in a given month. The raw CRSPMutual Funds dataset from January 1980 to

December 2023 has 9,327,753 share class-month observations. I start filling missing contact

information in CRSP data; i.e., 033A4BB1, 28CH, BC0C4, F41B8C4, and I8?. I fill missing contact

information between two (or more) non-empty contact information within the same share

class, when the two non-empty entries coincides. This step replaces 62,266 missing obs.

(0.68% of total) with non-empty entries.

CRSP reports a fund’s F41B8C4 starting January 2008. I use information from whois.com

to backward fill missing websites’ observations before January 2008. In particular, whois.com

has information on websites’ registration date, hosting service, and other characteristics. I

hand-collected from whois.com the registration date for each website in CRSP, and I verify

the website belongs to the CRSP fund using the Internet Archive Wayback Machine. Then, I

backward fill missing F41B8C4 observations included between the website’s registration date

and January 2008. This procedure backward fill 1,423,338 obs. (15.59% of total).

Following Berk and van Binsbergen (2015), I backfill missing CUSIP with the last available

non-empty CUSIP within the same share class. This step replace 871, 728 CUSIP obs.

(9.55% of total). I do not forward fill missing observations. I replace missing 4G?_A0C8> and

02CD0;_1211 fees with their time series average within the same share class (Roussanov,

Ruan and Wei, 2020). This step fills 646,928 obs. (7.09% of total) and 1,510,034 obs. (16.54%
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of total) respectively. Following Sirri and Tufano (1998) and Roussanov, Ruan and Wei (2020)

I compute the “effective” 12b-1 fee summing CRSP’s 02CD0;_1211 to the share class-month

front load, and assuming the front load fee is amortized over 7 years.

I adjust AUM (TNA) for inflation to be comparable across time. The seasonally adjusted

monthly CPI is from FRED All Consumers: All Items, and I use January 2000 as baseline

month (as in Berk and van Binsbergen, 2015).

Finally, since several funds in CRSP report their AUM only at the quarterly (or annual)

frequency before March 1993 (Pástor, Stambaugh and Taylor, 2015), I drop all share class-

month observations before that date. I also drop observations with missing CUSIP and ticker.

After this steps, I have 8,825,188 share class-month observations from the CRSP Mutual

Funds dataset.

B.2 FactSet Funds

I obtain mutual funds data from FactSet at the share class level, and I will merge it with

CRSP data at the CUSIP-month level. I use CUSIP rather than ticker, because the CUSIP

cannot be re-assigned. I use FactSet mainly to identify all share classes of the same mutual

fund �02C(4C_ 5 D=3_83 in a given month. From FactSet, I obtain the fund id, -fund type

(e.g., ETF, Open-end fund, etc.), the fund name, brand, share class, leverage factor, category,

minimum initial investment, and cash holdings.

I adjust AUM (TNA) anc cash holdings for inflation to be comparable across time (CPI

from FRED All Consumers: All Items, and I use January 2000 as baseline month). I have

38,715,834 share class-month observations from the FactSet Funds dataset.

B.3 Morningstar Direct

I complement CRSPMutual Funds and FactSet data with information on US-domiciliated

mutual funds from Morningstar Direct. I use monthly data at the share class level (B4283).

The raw Morningstar Direct dataset has 5,003,970 share class-month observations, and I

will merge it with CRSP/FactSet data at the ticker-month level. Following Berk and van
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Binsbergen (2015), I start filling empty ticker observations with the last available non-empty

ticker within share class. After this step, I set to “missing” all observations with more than

one fund associated with the same ticker-month match, to avoid matching mistakes. Then, I

drop all observations without a valid ticker (1,278,877 obs., 25.56 % of the initial raw data).

I adjust AUM (TNA) for inflation to be comparable across time. The seasonally adjusted

monthly CPI is from FRED All Consumers: All Items, and I use January 2000 as baseline

month (as in Berk and van Binsbergen, 2015).

After this steps, I have 3,541,168 share class-month observations from Morningstar Direct.

B.4 CRSP-Morningstar-FactSet Merged

I merge CRSP and FactSet dataset by CUSIP-month. Then, I merge the remaining share

class-month observations with Morningstar by ticker-month. I prefer merging by CUSIP

rather than ticker, because the CUSIP cannot be re-assigned.

The CRSP dataset resulting from Appendix Section B.1 has 2,954 observations (0.03% of

total) in which the same CUSIP-month pair appears twice. Inspecting those observations,

they do not appear to be double reporting, but rather mistakes on CRSP’s side. For each of

those observations, I keep the CUSIP-month with the largest total AUM in the sample.

I merge CRSP and FactSet dataset by CUSIP-month. The merge results in 7,646,161/8,689,175

observations merged (88%).

Then, I merge the remaining 1,043,024 observations with Morningstar by ticker-month.

The merge results in 28,195/1,043,024 extra matches (2.70%). I drop the remaining 1,014,829

unmerged observations, since fuzzy attribution of CUSIP or ticker might result in incorrect

mergers.

I classify index funds following Berk and van Binsbergen (2015) and Pástor, Stambaugh

and Taylor (2015) as closely as possible. I flag a share class observation as index fund if

contains "INDEX", "ETF", "ISHARES", "IDX", "INDX" in its (uppercase letters) fund name,

4C_ 5 ;06 is either "F" or "N", the lipper class belongs to S&P500 index (;8??4A_2;0BB is

"SPSP" or "SP"), the 8=34G_ 5 D=3_ 5 ;06 is "Y", the FactSet’s fund type is either "ETF" or

"ETN", the (uppercase letters) brand name is "ISHARES", or it is an index levered fund. I

identify a share classes to be of an index levered funds if it has FactSet’s leverage factor
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larger than 1, or if it contains "INVERSE", "SHORT", "ULTRA", "2X", "3X", "4X", "5X", "6X",

"7X", "8X", "9X", "0X", "SHORT TERM", "SHORT TM", "SHORT BOND", "SHORT BND",

"LONG SHORT", "LG SHORT" in its (uppercase letters) fund name. I classify Vanguard

funds if a fund’s name matches one of these (uppercase letters) names: "VFINX", "VEXMX",

"NAESX", VEURX", VPACX", "VVIAX", "VBINX", "VEIEX", "VIMSX", "VISGX", or "VISVX".

Additionally, following Ben-David et al. (2018), I identify ETFs in my sample merging it

with a list of ETFs from CRSP Monthly Stock File (BℎA23==73). This merge results in

271,198/7,403,148 matches (3.66% of total.)

I classify institutional share classes as observations with 8=BC_ 5 D=3 equal to "Y", or if it

contains "INSTITUTIONAL SHARES", "INSTITUTIONAL CLASS", "CLASS I", or "CLASS

Y" in its (uppercase letters) fund name. I classify retail share classes as observations with

A4C08;_ 5 D=3 equal to "Y", or if it contains "RETAIL SHARES", "RETAIL CLASS", "CLASS A",

"CLASS B", "CLASS C", or "INVESTOR CLASS" in its (uppercase letters) fund name.

Then, I aggregate observations across all share classes of the same fund and keep only

equity mutual funds and ETFs. I sum the AUM of all share classes, and average all other

variables (e.g., expense ratio, returns, turnover, etc.), weighted by lagged AUM. I also keep

the first offer date of the oldest share class within fund. Finally, I drop observations before

the first time a fund reaches more than $5 million in AUM (in January 2000 dollars) if the

fund ever reach that threshold in the sample. I drop observations dated before the fund’s

first offer date to account for incubation bias (Evans, 2010) and I remove observations with

less than 2 years in the full sample (Berk and van Binsbergen, 2015). After this step, I have

1,157,599 fund-month observations.

B.5 Website Technologies

I obtain information on a fund website’s technology adoption from BuiltWith. In general,

website technologies are defined as tools and services like analytics, payment systems,

networking and programming scripts that enhance a website’s features. For example, PayPal

Credit is a technology that enables customers to make buy-now-pay-later payments on a

website. Other examples of website technologies are Google Maps, Apple Pay, and Shopify.

BuiltWith is a company specialized in website profiling, who sells these data to companies
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and consultants. They analyze websites’ page code and search for specific patterns that

identify the usage of technologies —similar to how a virus scanner searches for pattern in

files to identify viruses. The most common patterns they use to identify such technologies

are HTML tags, cookies, and Javascript snippets found in a website’s source code. BuiltWith

continuously crawls websites and analyzes their underlying technologies. The provide a

comprehensive database of technologies with installation and (eventual) removal date for

millions of websites. They mark a technology as “removed", if they don’t find it for two

consecutives crawls on a website’s code. Appendix Figure B.1 shows a snapshot of the

technology data for arrowfunds.com, as it appears in my sample. For each unique website

in my sample (from CRSP Mutual Funds data) I collect all the technologies name, and

installation/removal dates. BuiltWith also provide a C42ℎ=>;>6H_20C4 6>AH (e.g., Analytics,

Feeds, etc.) for each technology, that I map to all technologies installed at least once in

my sample. Then, I build a panel with F41B8C4-C42ℎ=>;>6H_=0<4-month where the first

month is the 5 8ABC_34C42C43 month, and the last one is the ;0BC_34C42C43 month. I further

filter for analytics’ technologies that are aimed to collect and analyze customers’ data, and I

count the number of such technologies installed in the website. Finally, I merge this dataset

by F41B8C4-30C4 to the main CRSP/Morningstar/FactSet data at the share class level (before

aggregation). I merge 3,091,431/7,614,808 observations (i.e., 40.60% of the share class-month

observations starting March 1993 have at least one data technology in place). Then, I replace

missing with zeros, if I have a valid website for the share class-month observation and I have

data from BuiltWith for the associated F41B8C4-month, but BuiltWith does not detect data

analytics technologies for that month.
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B.6 Final Funds Sample

From the sample of 1,157,599 fund-month observations, I compute fund flows following

Lou (2012):

�;>F8 ,C =
�*"8 ,C − �*"8 ,C−1 · (1 + A8 ,C) −"�#8 ,C

�*"8 ,C−1
, (B.1)

where �*"8 ,C represents total net assets for fund 8 in month C, A8 ,C is the (gross) monthly

return, and "�#8 ,C is the increase in �*" due to the fund’s mergers (if any) in month C.

Since CRSP does not reports the exact date inwhich themerger takes place, I follow Lou (2012)

and use information about the latest available NAV of the target funds to build a six-months

window where the merger plausibly took place. In particular, from CRSP I observe the last

date in which the target fund has non-empty NAV, and the identifier of the acquirer. For

the acquiring fund, I build a six months window which starts one month before the latest

available date of the target fund, until five months after. Within this window, I first compute

the flows without accounting for the possible merger (i.e., �*"8 ,C−�*"8 ,C−1·(1+A8 ,C
�*"8 ,C−1

) and I flag as

<4A64A_<>=Cℎ the date with highest flow within the six-months window. Appendix Table

B.1 gives an example of this approach for the acquirer fund 2AB?_ 5 D=3=> == 662. In the

example, the target fund had latest AUM of $452.5 million (latest date 1999m4). Around the

six-months window, the acquirer has one clear 5 ;>F outlier (computed without accounting

for the merger); i.e., a +2,294% net flow in 1995m5. I flag the 1999m5 observation as merger

date. Therefore, following equation B.1, the actual fund flow in 1999m5 is -0.6417.

Finally, I keep observations with available variables for my analysis (i.e., �;>F, AUM,

fees). I remove fixed income mutual funds, money market funds, variable products, and

others (e.g., 529 Plan, Collective Investment Trust). The monthly sample now contains only

ETFs and equity (open-end) mutual funds from March 1993 to December 2023.

80



2AB?_ 5 D=3=> <>=Cℎ )#� F8=3>F6" CA6C_;0BC)#� 5 ;>F 5 ;06"4A64A

662 1999m1 19.94 0 . 0.0203 0
662 1999m2 18.71 0 . -0.0127 0
662 1999m3 20.14 1 452.5 0.0517 0
662 1999m4 19.19 1 452.5 -0.0818 0
662 1999m5 459.05 1 452.5 22.9441 1
662 1999m6 450.48 1 452.5 -0.0645 0
662 1999m7 410.50 1 452.5 -0.0478 0
662 1999m8 400.31 1 452.5 -0.0182 0
662 1999m9 368.87 0 . -0.0510 0
662 1999m10 375.46 0 . -0.0415 0

Table B.1: Example of Funds Merger: This table shows an example of funds merger attribution date on CRSP.
In this case, the attributed merger month is 1999m5, since it has the largest 5 ;>F within the six months window
around the target latest AUM (1999m4).

B.7 N-SAR Filings

Form N-SAR filings are SEC regulatory files that US registered investment companies

(including open-end mutual funds in my sample) used to report until June 1, 2018.37 N-SAR

filings were filed semi-annually and contains a host of detailed information including a

fund’s service providers, distribution activity, brokerage, and governance. I obtain N-SAR

regulatory filings data from Wharton Research Data Service (WRDS) from January 2006, to

June 2018. Importantly, each “registrant” (or fund complex) files a separate N-SAR form and

reports information for all funds within the fund complex. Each registrant has a unique 28:

code, but it can include more than one fund. To extract fund-level information in a registrant

group, I use three approaches. First, for registrant groups with only one fund the approach

is straightforward: I link the information in the Form N-SAR to the (unique) fund reported

by the registrant. This step yields 18,843 observations.

Second, for registrants with more than one fund, I first match the registrant group with

all funds contained in the complex, by 28:-month. Then, I fuzzy match by funds’ name

(B4A84B_=0<4) within registrant group using Stata command reclink2. I require that the

precision of the fuzzy match is above 97.5%. This procedure gives 185,236 perfect matches,

37As part of the Investment Company Reporting Modernization initiative, the SEC rescinded Form N-SAR
effective June 1, 2018, replacing it with Form N-CEN and Form N-PORT.
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and 75,688 fuzzy matches with average precision 99.80%.

Third, for funds without a valid B4A84B_=0<4, I match to the respective registrant by

28: code. Then, for all funds in a fund complex I obtain the turnover and net flows in the

N-SAR filings and compute all the pairwise correlations with turnover and net flows from

the main CRSP/Morningstar/FactSet dataset (see Appendix B.4) within 28:. Finally, I link

funds with pairwise correlation of turnover and net flows above 99%. After this step, I have

595 additional observations.

B.8 Mutual Fund Prospectus Data

I retrieve mutual funds’ prospectuses from the SEC’s EDGAR. I focus on Forms 485APOS

and 485BPOS, which contain a fund’s statutory prospectus. The quarterly sample is from

2006 to 2023. When a mutual fund does not amend its prospectus in each quarter, I

consider its last prospectus available. Starting in 2006, the SEC began requiring series

ID (fund identifier) and class ID (share class identifier) in each filing. This reporting

standard allow to easily link SEC regulatory filings data with major commercial dataset,

like CRSP/Morningstar/FactSet. I follow Mullally and Rossi (2025), and use the identifiers’

table available at the SEC’s website (https://www.sec.gov/open/datasets-investment_

company) to link mutual funds’ prospectuses to the main sample.

For each filing, I download the raw text from EDGAR and parse it to remove HTML tags,

XML codes, and other text markups. I then identify candidate Principal Investment Strategy

(PIS) sections using regular expressions that search for common section headers such as

“Principal Investment Strategy(ies)”, “Investment Strategy”, or “Primary Strategy”, and

terminate at typical subsequent sections such as “Principal Risks” or “Fees and Expenses”.

Once I identify a candidate section, I further screen for its plausibility of being a PIS section

in two ways.

First, I exclude spurious matches near the table of contents or summary sections. These

PIS candidate are typically short texts (between 5 and 20 words) around the summary section

of the fund’s prospectus, and clearly represent false positive PIS sections. Second, I require

that the section contain characteristic language associated with investment strategies, such

as “under normal circumstances. . . ”, “the fund seeks. . . ” or “the fund normally invests
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primarily. . . ”. I clean each section by removing formatting characters, and stripping out

numbers unlikely to represent percentages or portfolio weights. Appendix A in (Abis and

Lines, 2024, p. 21) shows that the cross sectional distribution of PIS word counts ranges from

20 to around 1,500. Therefore, I remove candidate PIS section with less than 20 words, or

excessively long blocks (>2,500 words).

When a filing reports multiple series, I match each PIS to the appropriate series in two

steps. I first search for the cleaned series name directly in each PIS, giving priority to longer

and more distinctive names to avoid misclassification. For unmatched cases, I then search

the surrounding context (up to 10,000 words preceding the section) for the series name and

assign the section accordingly. If multiple matches remain, I retain the one with the closest

textual proximity with a series ID’s name; if no confident match can be made, I flag the filing

and match it manually. Each PIS is stored at the series-date level with its respective 28: code,

series ID, and filing date.

B.9 Mutual Funds Portfolio Holdings

I obtain mutual funds’ portfolio holdings data from Thomson Reuters (s12). The database

reports fund-level security holdings filed with the SEC. My sample starts in 2004Q2, the first

quarter in which funds were required to report holdings quarterly; coverage before then is

irregular and incomplete (Harris, Hartzmark and Solomon, 2015). I merge the Thomson

Reuters (s12) portfolios with the main CRSP Mutual Funds data using the WRDS MF_LINK

tables, which provides a portfolio-level mapping between the two datasets. The final sample

consists of quarterly portfolio holdings for US equity mutual funds from 2004Q2 to 2023Q4.

Previous research (e.g., Shive and Yun, 2013) reports a discontinuity in Thomson Reuters

(s12) mutual funds holdings coverage after 2008, when compared to CRSP holdings. A

common solution in the literature has been to use s12 holdings before June 2008 and CRSP

thereafter. However, Thomson Reuters seems to have solved this issue in later vintages

(see Appendix Figure B.2). Thus, I prefer not to append different data sources and use the

updated s12 holdings throughout the sample.
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Figure B.2: Total Assets in Thomson Reuters (s12) and CRSP Holdings. The figure shows the total assets (in
trillion of US dollars) in the Thomson Reuters (s12) and CRSP mutual funds holdings databases. CRSP has no
holdings data before 2003 (shaded area). The solid blue line reports total equity assets in the Thomson Reuters
(s12), while the dotted red line show the CRSP mutual funds holdings data. This figure updates Figure 1 in
Shive and Yun (2013) using updated vintages of data.
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C List of CIP Codes for Instrumental Variable

CIP Code Program Title Broad Category

30.7001 Data Science, General Data Analytics
30.7099 Data Science, Other Data Analytics
30.7101 Data Analytics, General Data Analytics
30.7102 Business Analytics Data Analytics
30.7103 Data Visualization Data Analytics
30.7199 Data Analytics, Other Data Analytics
30.7104 Financial Analytics Data Analytics
11.0301 Data Processing Technology Data Analytics
11.0802 Data Modeling/Warehousing and Database Admin. Data Analytics
27.0501 Statistics, General Statistics
27.0601 Applied Statistics, General Statistics
52.1302 Business Statistics Statistics
27.0502 Mathematical Statistics and Probability Statistics
27.0503 Mathematics and Statistics Statistics
27.0599 Statistics, Other Statistics
11.0501 Computer Systems Analysis/Analyst Computer Science
11.0401 Information Science/Studies Computer Science
30.3001 Computational Science Computer Science
30.0601 Systems Science and Theory Computer Science
30.0801 Mathematics and Computer Science Computer Science
11.0101 Computer and Information Sciences, General Computer Science
11.0701 Computer Science Computer Science
11.0104 Informatics Computer Science
11.0103 Information Technology Computer Science
11.0901 Computer Systems Networking Computer Science
11.0902 Cloud Computing Computer Science
11.1001 Network and System Administration Computer Science
11.1003 CS Security/Information Assurance Computer Science
11.1002 System, Networking, LAN/WANMgmt. Computer Science
11.1005 IT Project Management Computer Science
52.1201 Management Information Systems, General Computer Science

Table C.1: CIP Codes for Data Analytics-Related Fields: This table reports the Core Instructional Programs
(CIP) that I use to construct the local supply of graduates in data analytics. I obtain degree counts from the
Integrated Postsecondary Education Data System (IPEDS) and include bachelor’s, master’s, and Ph.D. degrees
awarded by U.S. universities. The annual sample period is from 2000 to 2023.
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D Mutual Funds Prospectuses Text Classification

This appendix describes the text classifications and cleaning ofmutual funds prospectuses

text. I extract the Principal Investment Strategy (PIS) text from SEC Form 485 prospectuses

(Form 485APOS and 485BPOS) and the frequency at which specific words and phrase are

mentioned. The goal is to capture whether prospectuses emphasize themes that appeal to

retail investors (Ben-David et al., 2022).

The unit of observation is the PIS of a mutual fund series in a given fiscal quarter. I

obtain all Form 485 filings’ plain text from the SEC’s EDGAR. I merge fund prospectuses

to the CRSP-Morningstar-FactSet dataset using the series ID (fund identifier) and class ID

(share class). I keep the last prospectus filing for each series-quarter. This procedure avoids

double-counting and accounts for prospectuses’ amendments. I lowercase all text, remove

HTML tags, formatting, and punctuation. All word and phrase counts are scaled by the total

number of words in the PIS.

The resulting measure is expressed per 100 words of text, to facilitate interpretation. I use

both tokens precise matches (exact words) and phrase-level matches. Phrase matches allow

me to capture bigrams or regular expressions. As I count both token and phrase matches,

phrase matches do not double-count overlapping token matches. As robustness checks, I

recompute measures under three alternative schemes: (i) excluding stopwords from the

denominator, (ii) capping repeated hits within the same sentence at one, and (iii) dropping

observations with fewer than 200 words. These alternative definitions do not change the

results.

Thematic categories proxy for a fund tends to mention retail-oriented themes in its PIS. I

classify words and phrases into themes such as ESG, AI, or clean energy. I select themes

based on examples in (Ben-David et al., 2022). Table D.1 provides the full list of tokens and

phrases by theme. I compute the composite measure as the sum of all themes mentions.

In addition to theme counts, I compute a text readability index. I measure readability

using the Flesch Reading Ease (FRE) index (Flesch, 1948). It is a common measure that

summarizes the readability of a text by penalizing long sentences and complex words.

Higher values of FRE indicate easier text.
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Category Tokens and Phrases

ESG esg, sustainable, impact, environmental, governance, responsible

Clean Energy renewable, solar, wind, battery, ev, “clean energy”, “energy
transition”

AI ai, robotics, neural, “artificial intelligence”, “machine learning”,
“generative ai”

Cryptocurrency crypto, bitcoin, ethereum, blockchain, “digital asset(s)”

Cannabis cannabis, marĳuana, hemp, cbd

Cybersecurity cybersecurity, infosec, malware, “data breach”, “cyber attack”

Religious Values faith, biblical, christian, islamic, sharia, halal, “faith-based”,
“values-based”

Political Values conservative, liberal, republican, democrat, “pro-life”, “second
amendment”

Space satellite, rocket, launch, aerospace, “space exploration”

Video Games gaming, gamers, console, “video game(s)”, e-sports

Table D.1: Themes Classification and Words/Phrases: This table reports the list of words and sentences
associated with each retail-oriented theme. I count the number of word phrase matches in each fund PIS, scale
by the total number of words, and express the final measure per 100 words of text.
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E Additional Results

This section contains additional results and robustness not contained in the main text.

E.1 Appendix Figures
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(A:) Overlap in Technology Adoption.
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(B:) Comparison with Random Simulation.

Figure E.1: Overlap in Technology Adoption within Hosting Platform. The figure shows the cosine similarity
in website technology adoption within website hosting platforms. Cosine similarity is higher when there is
high overlap among website technologies within a given hosting platform. Panel A shows the histogram of
similarities for the sample of US mutual funds in this paper (mean 0.29, median 0.27). Panel B also reports, in
red, the histogram of similarities for counterfactual simulations where technology adoption within hosting
platforms is random (mean 0.43, median 0.44).
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Figure E.2: Word Cloud of Data Technologies’ Descriptions. The figure shows the word cloud of data
technologies’ features in my sample. For each data technology, I collect a short description of what the
technology allows to do (e.g., ipstack: “provides IP to geolocation APIs and global IP database services") and plot the
word cloud where larger fonts indicate a higher word frequency.
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Figure E.3: Balance Covariates. This figure shows the empirical pdf of covariates for funds in the treatment
and control group. All variables are normalized to have a mean of zero and a standard deviation of one in the
full sample. For each fund’s adoption of a data technology in month C (treatment), I construct the control group
as the sample of funds with no data technologies in place in month C. For each group, I report the covariates in
the 3 months pre-adoption. The figure shows covariates included in regressions in the main text.
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Figure E.4: Heterogeneity of Effect on Flows by Decreasing Returns to Scale. This figure shows results
for difference-in-differences coefficients across different values of decreasing returns to scale (1) as of data
technology adoption. I estimate decreasing returns to scale as-of adoption following the recursive demeaning
approach proposed in Pástor, Stambaugh and Taylor (2015). The coefficient 1 captures the extent to which
a fund’s size reduces its ability to generate alpha. Each bar represents a level of subsample by decreasing
returns to scale coefficient (e.g., the first bar represents all funds with almost negligible decreasing returns to
scale). Each vertical line represents the 95% confidence interval. The specification is the same as the main
specification in equation (2). All regressions include fund and category×time fixed effects, and controls: fund’s
size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C.
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Figure E.5: Heterogeneity of Effect on Expense Ratio by Decreasing Returns to Scale. This plot report a
placebo test on the heterogeneity of the effect of data technology on expense ratio by subsample based on
decreasing returns to scale The figure shows results for difference-in-differences coefficients across different
values of decreasing returns to scale (1) as of data technology adoption. I estimate decreasing returns to scale
as-of adoption following the recursive demeaning approach proposed in Pástor, Stambaugh and Taylor (2015).
The coefficient 1 captures the extent to which a fund’s size reduces its ability to generate alpha. Each bar
represents a level of subsample by decreasing returns to scale coefficient (e.g., the first bar represents all funds
with almost negligible decreasing returns to scale). Each vertical line represents the 95% confidence interval.
The specification is the same as for Table 5. All regressions include fund and category×time fixed effects, and
controls: fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C.
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Figure E.6: Direct Sold vs Broker-Sold Funds. This figure shows results for difference-in-differences coefficients
for no-load funds and broker-sold funds. No-load funds are funds that are directly sold to investors Del Guercio
and Reuter (2014). I identify directly sold (no-load) funds and broker-sold funds following (Sun, 2021). Each
bar represents a coefficient estimates on fund flows (plain bars) or expense ratio (hatched bars). The left (right)
axis refers to flows (fees). Vertical line represents the 95% confidence interval. The specification is the same
as the main specification in equation (2). All regressions include fund and category×time fixed effects, and
controls: fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C.
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E.2 Appendix Tables

Fund Flows8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.116*** 0.101**
(0.044) (0.043)

;>6AUM8 ,C -0.420*** -0.421*** -0.420*** -0.421***
(0.025) (0.025) (0.025) (0.025)

;>6Age8 ,C -1.889*** -1.889*** -1.871*** -1.871***
(0.068) (0.068) (0.066) (0.066)

CAPM Alpha8 ,C 6.749*** 6.749*** 9.185*** 9.182***
(0.348) (0.348) (0.457) (0.457)

Turnover8 ,C 0.025 0.026 0.027 0.027
(0.040) (0.040) (0.036) (0.036)

12b-1 Fees8 ,C -0.156 -0.150 -0.115 -0.109
(0.101) (0.101) (0.099) (0.099)

Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.188 0.188 0.188 0.188
Outcome SE 6.266 6.266 6.266 6.266

Obs. 947,079 947,079 946,733 946,733
Adj. '2 0.094 0.094 0.126 0.126

Table E.1: Fund Flows and Data Technologies, detailed covariates results: This table shows results of panel
regression in which the dependent variable is the one-month-ahead fund flow. The regressors are a dummy
equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), and controls for fund-month
characteristics. See Section 3.2 for details on data technologies. The control variables include a fund’s size
(;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. The monthly sample include equity
mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund
and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Pre-adoption growth rates Control Treatment Difference p-value

Monthly
Fund Flows -0.192 -0.201 0.008 0.785

Quarterly
Fund Flows -0.250 -0.287 0.038 0.274

Table E.2: Parallel trends: This table reports the growth rate of fund flows in the 12 months pre-adoption,
for adopting and not-adopting fund. For each fund’s adoption of a data technology in month C (treatment), I
construct the control group as the sample of funds with no data technologies in place in month C. The table
shows monthly and quarterly growth rates of fund flows for the sample of treated and control group in the 12
months pre-adoption. I winsorize growth rates at the 1% and 99% level. The last column reports the p-value of
the difference between treated and control groups.
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Panel A: Treated (at adoption)
mean sd p5 p25 p50 p75 p95

AUM ($M) 1,137.59 2,786.38 7.25 45.16 196.86 848.55 5,757.72

Expense Ratio (%) 1.06 0.53 0.13 0.73 1.07 1.39 1.97

12b-1 Fees (%) 0.28 0.21 0.00 0.10 0.25 0.39 0.71

Flows (%) 0.30 6.06 -5.54 -1.55 -0.41 1.14 8.24

Turnover Ratio 0.75 1.08 0.05 0.23 0.46 0.85 2.31

Age (Years) 12.48 8.76 1.42 5.08 11.08 18.00 29.75

Panel B: Control
mean sd p5 p25 p50 p75 p95

AUM ($M) 930.97 2,440.76 6.69 39.78 169.32 665.31 4,227.31

Expense Ratio (%) 1.12 0.53 0.18 0.80 1.13 1.44 2.01

12b-1 Fees (%) 0.29 0.22 0.00 0.10 0.26 0.43 0.74

Flows (%) 0.20 6.12 -5.77 -1.77 -0.57 1.00 8.76

Turnover Ratio 0.83 1.03 0.07 0.27 0.54 0.99 2.40

Age (Years) 11.58 8.10 1.25 4.83 10.25 16.50 27.50

Table E.3: Covariates balance.: This table reports summary statistics of covariates for funds in the treatment
and control group. For each fund’s adoption of a data technology in month C (treatment), I construct the
control group as the sample of funds with no data technologies in place in month C. For each group, I report
the covariates in the 3 months pre-adoption. The table shows covariates included in regressions in the main
text. AUM is inflation adjusted in January 2000 $ million. Expense Ratio, 12b-1 Fees, and Flows are in %; e.g.,
the average fund flow for the control group is 0.20% monthly.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4) (5) (6) (6) (8)

Data8 ,C 0.132*** 0.118*** 0.115*** 0.101** 0.178*** 0.168*** 0.157*** 0.145***
(0.040) (0.040) (0.043) (0.043) (0.030) (0.045) (0.056) (0.043)

Estimator OLS OLS OLS OLS Stag-DiD Stag-DiD Stag-DiD Stag-DiD
Baseline controls: X X X X X X X X
Additional controls:

Expense Ratio 8 ,C X X × × X X × ×
Fund Flows8 ,C X X × × X X × ×
Morningstar Rating8 ,C × × X X × × X X

Fund FE X X X X X X X X
Time FE X × X × X × X ×
Category×Time FE × X × X × X × X

Outcome mean 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188
Outcome SE 6.266 6.266 6.266 6.266 6.266 6.266 6.266 6.266

Obs. 947,079 946,733 947,079 946,733 890,800 873,140 890,801 873,141
Adj. '2 0.108 0.138 0.100 0.132 0.108 0.138 0.100 0.132

Table E.4: Fund Flows and Data Technologies, additional controls: This table shows results of panel regression robust to several additional controls in
addition to the baseline regression. The dependent variable is the one-month-ahead fund flow. The regressors are a dummy equal to one if a fund 8
has a data technology in place at month C (Data8 ,C), and controls for fund-month characteristics. The control variables include a fund’s size (;>6AUM),
(;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. In columns (1), (2), (5), and (6) I also include past fund flow and expense ratio as controls.
Columns (3), (4), (7), and (8) add the Morningstar Rating in the set of controls. Columns (1) to (4) report results for baseline OLS, while columns (5) to (8)
show results using difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The monthly sample include equity
mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund and month (in parentheses). *, **, and ***
denote statistical significance at the 10%, 5% and 1% respectively.
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;>6AUM8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.114*** 0.102*** 0.117*** 0.123***
(0.022) (0.022) (0.028) (0.030)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 5.216 5.216 5.216 5.216
Outcome SE 2.007 2.007 2.007 2.007

Obs. 947,323 946,732 890,759 873,078
Adj. '2 0.842 0.854 0.842 0.854

Table E.5: Fund Size and Data Technologies: This table shows results of panel regression in which the
dependent variable is the fund size –that is, a fund’s (;>6) AUM. The regressors are a dummy equal to one if a
fund 8 has a data technology in place at month C (Data8 ,C), and controls for fund-month characteristics (omitted
for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s (;>6) age,
turnover, 12b-1 fees, and CAPM alpha in month C. I exclude the lagged fund’s size as a control, because it might
introduce post-treatment bias (Roberts and Whited, 2013). Columns (1) and (2) report results for baseline OLS,
while columns (3) and (4) show results using difference-in-differences estimator robust to staggered treatment
concerns (Gardner et al., 2024). The monthly sample include equity mutual funds and ETFs from March 1993
to December 2023. All standard errors are two-way clustered by fund and month (in parentheses). *, **, and ***
denote statistical significance at the 10%, 5% and 1% respectively.
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Expense Ratio8 ,C+1 (%)

(1) (2) (3) (4) (5) (6) (6) (8)

Data8 ,C 0.001* 0.001* 0.019*** 0.018*** 0.001*** 0.001*** 0.037*** 0.034***
(0.000) (0.000) (0.004) (0.004) (0.000) (0.000) (0.005) (0.005)

Estimator OLS OLS OLS OLS Stag-DiD Stag-DiD Stag-DiD Stag-DiD
Baseline controls: X X X X X X X X
Additional controls:

Expense Ratio 8 ,C X X × × X X × ×
Fund Flows8 ,C X X × × X X × ×
Morningstar Rating8 ,C × × X X × × X X

Fund FE X X X X X X X X
Time FE X × X × X × X ×
Category×Time FE × X × X × X × X

Outcome mean 1.133 1.133 1.133 1.133 1.133 1.133 1.133 1.133
Outcome SE 0.540 0.540 0.540 0.540 0.540 0.540 0.540 0.540

Obs. 947,079 946,733 947,079 946,733 890,801 873,141 890,802 873,141
Adj. '2 0.997 0.997 0.915 0.919 0.997 0.997 0.915 0.919

Table E.6: Expense Ratio and Data Technologies, additional controls: This table shows results of panel regression robust to several additional controls
in addition to the baseline regression. The dependent variable is the one-month-ahead fund expense ratio. The regressors are a dummy equal to one if
a fund 8 has a data technology in place at month C (Data8 ,C), and controls for fund-month characteristics. The control variables include a fund’s size
(;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. In columns (1), (2), (5), and (6) I also include past fund flow and expense ratio as
controls. Columns (3), (4), (7), and (8) add the Morningstar Rating in the set of controls. Columns (1) to (4) report results for baseline OLS, while columns
(5) to (8) show results using difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The monthly sample include
equity mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund and month (in parentheses). *, **,
and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4) (5) (6)

Data8 ,C 0.137*** 0.124** 0.144** 0.150*** 0.139*** 0.147***
(0.045) (0.057) (0.058) (0.043) (0.054) (0.047)

Baseline controls: X X X X X X
Performance control:

Vanguard Alpha X X × × × ×
FF 3-Factor Alpha × × X X × ×
FF 5-Factor Alpha × × × × X X

Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean 0.188 0.188 0.188 0.188 0.188 0.188
Outcome SE 6.266 6.266 6.266 6.266 6.266 6.266

Obs. 815,786 796,957 892,004 874,345 892,003 874,344
Adj. '2 0.094 0.126 0.089 0.118 0.080 0.110

Table E.7: Fund Flows and Data Technologies using different measures of performance: This table shows
results of panel regression in which the dependent variable is the one-month-ahead fund flow. The regressors
are a dummy equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), and controls
for fund-month characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The
baseline control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees. Columns (1) and
(2) additionally control for alpha with respect to a set of passive Vanguard funds, following Berk and van
Binsbergen (2015). Columns (3) and (4) use Fama and French (1993) 3-Factors, while columns (5) and (6) use
alpha with respect to the Fama and French (2015) 3-Factors model. All estimates use difference-in-differences
estimator robust to staggered treatment design (Gardner et al., 2024). The monthly sample include equity
mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund
and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Expense Ratio8 ,C+1 (%)

(1) (2) (3) (4) (5) (6)

Data8 ,C 0.037*** 0.034*** 0.037*** 0.034*** 0.037*** 0.034***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Baseline controls: X X X X X X
Performance control:

Vanguard Alpha X X × × × ×
FF 3-Factor Alpha × × X X × ×
FF 5-Factor Alpha × × × × X X

Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean 1.133 1.133 1.133 1.133 1.133 1.133
Outcome SE 0.540 0.540 0.540 0.540 0.540 0.540

Obs. 890,802 873,141 892,004 874,345 892,004 874,345
Adj. '2 0.915 0.919 0.922 0.926 0.922 0.926

Table E.8: Expense Ratio and Data Technologies using different measures of performance: This table
shows results of panel regression in which the dependent variable is the one-month-ahead expense ratio.
The regressors are a dummy equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), and
controls for fund-month characteristics (omitted for brevity). See Section 3.2 for details on data technologies.
The baseline control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees. Columns (1)
and (2) additionally control for alpha with respect to a set of passive Vanguard funds, following Berk and van
Binsbergen (2015). Columns (3) and (4) use Fama and French (1993) 3-Factors, while columns (5) and (6) use
alpha with respect to the Fama and French (2015) 3-Factors model. All estimates use difference-in-differences
estimator robust to staggered treatment design (Gardner et al., 2024). The monthly sample include equity
mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund
and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%) Expense Ratio8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.275*** 0.188** 0.061*** 0.052***
(0.053) (0.088) (0.005) (0.006)

Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.188 0.188 1.133 1.133
Outcome SE 6.266 6.266 0.540 0.540

Obs. 890,802 873,141 890,802 873,141
Adj. '2 0.094 0.124 0.922 0.926

Table E.9: Robustness of Main Results excluding Google Analytics: This table addresses concerns that
the results are entirely driven by Google Analytics. The table replicates the main findings in Tables 3 and 5
excluding Google Analytics from the set of data technologies. Columns (1) and (2) show results for flows,
while columns (3) and (4) report the robustness for results on expense ratio. The regressors are a dummy
equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), and controls for fund-month
characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The control variables
include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. All estimates use
difference-in-differences estimator robust to staggered treatment design (Gardner et al., 2024). The monthly
sample include equity mutual funds and ETFs from March 1993 to December 2023. All standard errors are
two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the 10%,
5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.116* 0.101* 0.148*** 0.171***
(0.059) (0.059) (0.053) (0.057)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.187 0.187 0.187 0.187
Outcome SE 6.264 6.264 6.264 6.264

Obs. 947,132 946,599 890,678 873,040
Adj. '2 0.094 0.126 0.094 0.126

Table E.10: Robustness Results on Flows, clustering by Fund Family: This table shows robustness results for
the main specification, clustering standard errors by fund family. The dependent variable is the one-month-
ahead fund flow. The regressors are a dummy equal to one if a fund 8 has a data technology in place at month C
(Data8 ,C), and controls for fund-month characteristics (omitted for brevity). See Section 3.2 for details on data
technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM
alpha in month C. Columns (1) and (2) report results for baseline OLS, while columns (3) and (4) show results
using difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The
monthly sample include equity mutual funds and ETFs fromMarch 1993 to December 2023. All standard errors
are two-way clustered by fund family and month (in parentheses). *, **, and *** denote statistical significance at
the 10%, 5% and 1% respectively.
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Expense Ratio8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.017*** 0.016*** 0.037*** 0.034***
(0.006) (0.006) (0.005) (0.005)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 1.133 1.133 1.133 1.133
Outcome SE 0.540 0.540 0.540 0.540

Obs. 947,079 946,510 890,678 873,040
Adj. '2 0.922 0.926 0.922 0.926

Table E.11: Robustness Results on Expense Ratio, clustering by Fund Family: This table shows robustness
results for the main specification, clustering standard errors by fund family. The dependent variable is the
one-month-ahead expense ratio. The regressors are a dummy equal to one if a fund 8 has a data technology in
place at month C (Data8 ,C), and controls for fund-month characteristics (omitted for brevity). See Section 3.2 for
details on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1
fees, and CAPM alpha in month C. Columns (1) and (2) report results for baseline OLS, while columns (3) and
(4) show results using difference-in-differences estimator robust to staggered treatment concerns (Gardner
et al., 2024). The monthly sample include equity mutual funds and ETFs from March 1993 to December 2023.
All standard errors are two-way clustered by fund family and month (in parentheses). *, **, and *** denote
statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.223 0.375* 0.329** 0.493*
(0.217) (0.202) (0.139) (0.282)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.289 0.289 0.289 0.289
Outcome SE 6.074 6.074 6.074 6.074

Obs. 13,276 11,712 12,047 9,011
Adj. '2 0.120 0.149 0.120 0.149

Table E.12: Robustness for Fund Families with only one website for each fund: This table shows results
of panel regression in which the dependent variable is the one-month-ahead fund flow, for a subset of the
main sample. I keep only fund families with a unique website associated to a given fund, and run the main
specification. The regressors are a dummy equal to one if a fund 8 has a data technology in place at month C
(Data8 ,C), and controls for fund-month characteristics (omitted for brevity). See Section 3.2 for details on data
technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM
alpha in month C. Columns (1) and (2) report results for baseline OLS, while columns (3) and (4) show results
using difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The
monthly sample include equity mutual funds and ETFs from March 1993 to December 2023. All standard
errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at
the 10%, 5% and 1% respectively.
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Fund Family Flows8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.430 0.420 0.816*** 0.832***
(0.448) (0.448) (0.264) (0.232)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 0.473 0.473 0.473 0.473
Outcome SE 55.606 55.606 55.606 55.606

Obs. 171,010 171,010 154,851 154,851
Adj. '2 0.007 0.008 0.008 0.008

Table E.13: Robustness aggregating Flows by Fund Family: This table shows results of panel regression in
which the dependent variable is the one-month-ahead within fund family total flow. The regressors are a
dummy equal to one if a fund family 8 has at least a data technology in place at month C (Data8 ,C), and controls
for fund family-month characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The
control variables include a fund family’s total size (;>6 total AUM), (;>6) age, and the number of funds in the
family in month C. Columns (1) and (2) report results for baseline OLS, while columns (3) and (4) show results
using difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The
monthly sample include equity mutual funds and ETFs fromMarch 1993 to December 2023. All standard errors
are two-way clustered by fund family and month (in parentheses). *, **, and *** denote statistical significance at
the 10%, 5% and 1% respectively.
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Expense Ratio8 ,C+1 (%)

(1) (2) (3) (4)

Data8 ,C 0.008*** 0.006 0.029*** 0.026***
(0.001) (0.006) (0.006) (0.007)

Estimator OLS OLS Staggered DiD Staggered DiD
Controls X X X X
Fund FE X X X X
Time FE X × X ×
Category×Time FE × X × X

Outcome mean 1.315 1.315 1.315 1.315
Outcome SE 0.522 0.522 0.522 0.522

Obs. 422,280 421,480 368,724 357,947
Adj. '2 0.918 0.922 0.918 0.922

Table E.14: Robustness Results on Expense Ratio, Retail Share Classes Only: This table shows robustness
results for the main specification on expense ratio, for retail share classes only. For each fund, I aggregate only
retail share classes and remove all institutional share classes. Then, I run the main specification as in Table
5. The dependent variable is the one-month-ahead expense ratio. The regressors are a dummy equal to one
if a fund 8 has a data technology in place at month C (Data8 ,C), and controls for fund-month characteristics
(omitted for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s
size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. Columns (1) and (2) report results
for baseline OLS, while columns (3) and (4) show results using difference-in-differences estimator robust to
staggered treatment concerns (Gardner et al., 2024). The monthly sample include equity mutual funds and
ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund family and month
(in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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P {Adoption} (%)

(1) (2) (3) (4) (5) (6)

Category Adoption %8 ,C 0.144 0.153 -0.261 0.131 0.184 0.272
(0.900) (0.290) (0.739) (0.220) (0.501) (0.170)

State Adoption %8 ,C 2.966*** 1.112***
(0.817) (0.275)

City Adoption %8 ,C 3.937*** 1.404***
(0.700) (0.224)

Zip Code Adoption %8 ,C 4.767*** 1.894***
(0.462) (0.183)

;>6AUM8 ,C 0.047* 0.015 0.031 0.008 0.074*** 0.022**
(0.025) (0.009) (0.025) (0.010) (0.025) (0.011)

;>6Age8 ,C -0.070 -0.019 -0.063 -0.014 -0.080 -0.020
(0.052) (0.019) (0.053) (0.020) (0.049) (0.021)

Estimator Logit Probit Logit Probit Logit Probit

Obs. 742,516 742,516 742,516 742,516 742,516 742,516
Pseudo '2 0.087 0.090 0.132 0.131 0.227 0.219

Table E.15: Technology Diffusion in the Asset Management Industry: This table shows results of logit/probit
regression of probability to adopt data technology, on the (lagged) adoption rate at different levels of aggregation.
The adoption rate is defined as the percentage of funds with data technology in place, within a given category,
state, city, or zip code in month C. Columns (1) and (2) use adoption rate at the state level, columns (3) and (4)
at city, and columns (5) and (6) at the zip code level. The regressors are adoption rate within fund category,
adoption rate at the geographical level (state, city, or zip code), and controls for fund-month characteristics
(omitted for brevity). The control variables include (lagged) fund’s size (;>6AUM) and (;>6) age. All standard
errors are clustered by month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and
1% respectively.
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Excluded: Boston Chicago New York Los Angeles Philadelphia San Francisco
(1) (2) (3) (4) (5) (6) (7)

Data8 ,2,H 1.559** 1.576* 1.210** 1.813** 1.803*** 2.050** 34.889***
(0.745) (0.809) (0.604) (0.756) (0.681) (1.012) (3.141)

Controls X X X X X X X
Fund FE X X X X X X X
Category×Time FE X X X X X X ×
CBSA×Time FE × × × × × × X

Outcome mean -1.723 -1.723 -1.723 -1.723 -1.723 -1.723 -1.723
Outcome SE 17.397 17.397 17.397 17.397 17.397 17.397 17.397

Obs. 33,537 37,600 30,961 39,067 38,728 37,550 39,856
Adj. '2 0.322 0.326 0.324 0.326 0.325 0.321 0.024
F-Stat 29.268 29.268 29.268 29.268 29.268 29.268 40.343

Table E.16: Robustness IV Estimates on Flows: Excluding Financial Districts: This table shows robustness results for the instrumental variable estimates
where the instrument is the local supply of talent in data analytics-related fields. The dependent variable is the one-month-ahead fund flow. In column (1)
to (6), I remove funds located in each financial district as defined in Christoffersen and Sarkissian (2009), namely, Boston, Chicago, Los Angeles, New York,
Philadelphia, and San Francisco. Column (7) includes CBSA×time fixed effects to reduce concern about local shocks. I instrument the adoption choice of
fund 8 in commuting zone (CBSA) 2 and year H, with the number of graduates in data analytics, statistics, and computer science from universities within a
fund’s CBSA. Annual university graduates are from the Integrated Postsecondary Education Data System (IPEDS) and include bachelor’s, master’s,
and Ph.D. degrees. See Appendix C for the detailed list of Core Instructional Programs (CIPs) in data analytics, statistics, and computer science. All
estimates use difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The regressors are a dummy equal to one if
a fund 8 in commuting zone 2 has a data technology in place in year H (Data8 ,2,H), and controls for fund-year characteristics (omitted for brevity). See
Section 3.2 for details on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in year
H. All variables are at the annual frequency. The sample period is from 2000 to 2023. All standard errors are two-way clustered by fund and year (in
parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Excluded: Boston Chicago New York Los Angeles Philadelphia San Francisco
(1) (2) (3) (4) (5) (6) (7)

Data8 ,2,H 0.037*** 0.034*** 0.025*** 0.030*** 0.032*** 0.028*** 0.409***
(0.008) (0.008) (0.010) (0.009) (0.012) (0.005) (0.065)

Controls X X X X X X X
Fund FE X X X X X X X
Category×Time FE X X X X X X ×
CBSA×Time FE × × × × × × X

Outcome mean 1.084 1.084 1.084 1.084 1.084 1.084 1.084
Outcome SE 0.527 0.527 0.527 0.527 0.527 0.527 0.527

Obs. 33,536 37,600 31,597 39,865 38,727 37,550 39,855
Adj. '2 0.658 0.659 0.651 0.659 0.659 0.657 0.006
F-Stat 29.268 29.268 29.268 29.268 29.268 29.268 40.343

Table E.17: Robustness IV Estimates on Fees: Excluding Financial Districts: This table shows robustness results for the instrumental variable estimates
where the instrument is the local supply of talent in data analytics-related fields. The dependent variable is the one-month-ahead expense ratio. In
column (1) to (6), I remove funds located in each financial district as defined in Christoffersen and Sarkissian (2009), namely, Boston, Chicago, Los
Angeles, New York, Philadelphia, and San Francisco. Column (7) includes CBSA×time fixed effects to reduce concern about local shocks. I instrument the
adoption choice of fund 8 in commuting zone (CBSA) 2 and year H, with the number of graduates in data analytics, statistics, and computer science from
universities within a fund’s CBSA. Annual university graduates are from the Integrated Postsecondary Education Data System (IPEDS) and include
bachelor’s, master’s, and Ph.D. degrees. See Appendix C for the detailed list of Core Instructional Programs (CIPs) in data analytics, statistics, and
computer science. All estimates use difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The regressors are
a dummy equal to one if a fund 8 in commuting zone 2 has a data technology in place in year H (Data8 ,2,H), and controls for fund-year characteristics
(omitted for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees,
and CAPM alpha in year H. All variables are at the annual frequency. The sample period is from 2000 to 2023. All standard errors are two-way clustered
by fund and year (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Expense Ratio8 ,C+1 (%)

I8 : Tenure of Adoption N. of Data Tech.

(1) (2) (3) (4) (5) (6)

Data8 ,C 0.018** 0.019** 0.010 0.009 0.012 0.010
(0.008) (0.008) (0.009) (0.008) (0.008) (0.008)

Data8 ,C × P>BCC 0.021*** 0.022***
(0.008) (0.007)

Data8 ,C × P>BCC × I8 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002)

Controls X X X X X X
Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean 1.174 1.174 1.174 1.174 1.174 1.174
Outcome SE 0.542 0.542 0.542 0.542 0.542 0.542

Obs. 807,811 807,180 584,569 583,935 692,109 691,474
Adj. '2 0.921 0.925 0.917 0.921 0.928 0.931

Table E.18: Fund Fees and TensorFlow: This table shows results of panel regression in which the dependent
variable is the one-month-ahead expense ratio. Columns (1) and (2) follow specification in equation (3), while
columns (3) to (6) follow (4). In columns (3) and (4) the continuous treatment I8 is the (;>6) number of months
between the first data technology adoption and TensorFlow’s release. Columns (5) and (6) use the number of
data technologies installed as of TensorFlow’s release, as continuous treatment I8 . Data8 ,C is a dummy equal to
one if fund 8 has a data technology in place at month C. See Section 3.2 for details on data technologies. The
fund-month control variables (omitted for brevity) include a fund’s size (;>6AUM), (;>6) age, turnover, CAPM
alpha, 12b-1 fees, and the coefficient of data competition (equation (6)) in month C. The monthly sample include
equity mutual funds and ETFs fromMarch 1993 to December 2023, which did not adopt a data technology after
June 2015 (i.e., six-months before TensorFlow’s release). All standard errors are two-way clustered by fund and
month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

I8 : Tenure of Adoption N. of Data Tech.

(1) (2) (3) (4) (5) (6)

Data8 ,C 0.567*** 0.595*** 0.517*** 0.517*** 0.491*** 0.491***
(0.139) (0.140) (0.146) (0.146) (0.136) (0.136)

Data8 ,C × P>BCC 0.253** 0.313***
(0.109) (0.109)

Data8 ,C × P>BCC × I8 0.080** 0.080** 0.023** 0.023**
(0.033) (0.033) (0.011) (0.011)

Controls X X X X X X
Fund FE X X X X X X
Time FE X × X × X ×
Category×Time FE × X × X × X

Outcome mean 0.182 0.182 0.182 0.182 0.182 0.182
Outcome SE 6.458 6.458 6.458 6.458 6.458 6.458

Obs. 598,363 597,524 438,485 438,485 519,866 519,866
Adj. '2 0.104 0.140 0.093 0.093 0.101 0.101

Table E.19: Robustness on TensorFlow, Excluding Growth Funds: This table shows results of panel regression
in which the dependent variable is the one-month-ahead fund flow. I exclude growth funds from this sample
to mitigate concerns that results are driven by an increase in expected cash flows for tech stocks. Columns
(1) and (2) follow specification in equation (3), while columns (3) to (6) follow (4). In columns (3) and (4)
the continuous treatment I8 is the (;>6) number of months between the first data technology adoption and
TensorFlow’s release. Columns (5) and (6) use the number of data technologies installed as of TensorFlow’s
release, as continuous treatment I8 . Data8 ,C is a dummy equal to one if fund 8 has a data technology in place
at month C. See Section 3.2 for details on data technologies. The fund-month control variables (omitted for
brevity) include a fund’s size (;>6AUM), (;>6) age, turnover, CAPM alpha, 12b-1 fees, and the coefficient of
data competition (equation (6)) in month C. The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2023, which did not adopt a data technology after June 2015 (i.e., six-months before
TensorFlow’s release). All standard errors are two-way clustered by fund and month (in parentheses). *, **, and
*** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

(1) (2)

Data8 ,C 0.437*** 0.379***
(0.141) (0.132)

Data8 ,C × �2,C -0.571** -0.493**
(0.224) (0.212)

�2,C 0.620 0.021
(0.422) (1.607)

;>6AUM8 ,C -0.422*** -0.421***
(0.025) (0.025)

;>6Age8 ,C -1.888*** -1.870***
(0.068) (0.066)

CAPM Alpha8 ,C 6.751*** 9.183***
(0.348) (0.457)

Turnover8 ,C 0.025 0.027
(0.040) (0.036)

12b-1 Fees8 ,C -0.160 -0.117
(0.101) (0.099)

Fund FE X X
Time FE X ×
Category×Time FE × X

Outcome mean 0.187 0.187
Outcome SE 6.264 6.264

Obs. 947,307 946,733
Adj. '2 0.094 0.126

Table E.20: Fund Flows and Competition: This table shows results of panel regression in which the dependent
variable is the one-month-ahead fund flow. The regressors are a dummy equal to one if a fund 8 has a data
technology in place at month C (Data8 ,C), and controls for fund-month characteristics. See Section 3.2 for details
on data technologies. I include an interaction term with the competition coefficient �2,C for fund category 2 in
month C. The competition coefficient is built following equation (6), and it captures the fraction of funds with
data technologies in place within fund category-month. The monthly sample include equity mutual funds and
ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund and month (in
parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)

(1) (2) (3) (4)

N. )42ℎ8 ,C 0.034*** 0.049***
(0.007) (0.018)

N. )42ℎ2
8 ,C

-0.001
(0.001)

;>6(1+ N. )42ℎ8 ,C) 0.133*** 0.131***
(0.032) (0.031)

Controls X X X X
Fund FE X X X X
Time FE × × X ×
Category×Time FE X X × X

Outcome mean 0.188 0.188 0.188 0.188
Outcome SE 6.266 6.266 6.266 6.266

Obs. 798,041 798,041 798,559 798,041
Adj. '2 0.126 0.126 0.094 0.126

Table E.21: Fund Flows and Number of Technologies: This table shows results of panel regression in which
the dependent variable is the one-month-ahead fund flow. The regressors are the number of data technologies
in place for fund 8 at month C (N. )42ℎ8 ,C) in column (1); column (2) adds its square (N. )42ℎ2

8 ,C
), and the ;>6 of

(1+N. )42ℎ8 ,C) in columns (3)-(4). See Section 3.2 for details on data technologies. All columns include controls
for fund-month characteristics (omitted for brevity). The control variables are a fund’s size (;>6AUM), (;>6)
age, turnover, and CAPM alpha in month C. The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2023. All standard errors are two-way clustered by fund and month (in parentheses).
*, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Vanguard alpha (%) CAPM alpha (%) FF-3 alpha (%) FF-5 alpha (%)

(1) (2) (3) (4) (5) (6) (7) (8)

Data8 ,C 0.021 0.027* 0.014 0.002
(0.016) (0.015) (0.015) (0.022)

Data8 ,C -0.002 0.013 0.025 0.022
(0.019) (0.017) (0.019) (0.027)

;>6AUM8 ,C -0.159*** -0.134*** -0.103*** -0.036
(0.020) (0.017) (0.019) (0.031)

;>6AUM8 ,C -0.087* -0.048 0.020 0.097
(0.047) (0.039) (0.038) (0.059)

Estimator OLS RD OLS RD OLS RD OLS RD
Controls X X X X X X X X
Fund FE X X X X X X X X
Time FE X X X X X X X X

Outcome mean -0.651 -0.651 -0.146 -0.146 -0.539 -0.539 -0.449 -0.449
Outcome SE 3.191 3.191 2.993 2.993 4.994 4.994 7.335 7.335

Obs. 971,918 971,918 971,918 971,918 971,918 971,918 971,918 971,918
Adj. '2 0.174 0.002 0.402 0.001 0.702 -0.001 0.750 -0.001
First stage F-stat − 5,273.077 − 5,410.182 − 5,417.647 − 5,417.647

Table E.22: Performance and Data Technologies: This table shows results of regression in which the dependent variable is the one-month-ahead fund
performance. Columns (1), (3), (5), and (7) report results for OLS regressions, while columns (2), (4), (6) and (8) use the recursive demeaning approach
(RD) in Pástor, Stambaugh and Taylor (2015) which accounts for the positive contemporaneous correlation between fund size and unexpected returns. The
regressors are a dummy equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), 12b-1 fees, and controls for fund-month characteristics
(omitted for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s size (;>6AUM), (;>6) age, and turnover. I use
Vanguard alpha (columns (1) and (2)), CAPM alpha (columns (3) and (4)), FF-3 factors alpha (columns (5) and (6)), and FF-5 factors alpha (columns (7)
and (8)) as proxy of funds’ performance. The Vanguard alpha is the risk adjusted performance with respect to the set of available Vanguard index funds
(?). The monthly sample include equity mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way clustered by fund
and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Payment Redistribution: (in %) BD Captive Own Adv. Prospect

(1) (2) (3) (4) (5)

Data8 ,C -3.039*** 0.088*** -0.368 -0.061*** 0.015*
(0.806) (0.030) (0.779) (0.023) (0.008)

Controls X X X X X
Fund FE X X X X X
Category×Time FE X X X X X

Outcome mean 27.031 0.170 40.160 0.488 0.053
Outcome SE 42.480 1.337 48.222 3.180 0.355

Obs. 209,530 209,268 209,253 209,535 209,367
Adj. '2 0.869 0.760 0.881 0.736 0.641

Table E.23: Redistribution of 12b-1 Fees Payments: This table shows results of panel regression on funds’
distribution to 12b-1 payment categories (in %), robust to concerns in staggered difference-in-differences (see
Goodman-Bacon, 2021). The dependent variable is the fund’s one-month-ahead percentage allocation of 12b-1
fees in each category. Column (1) report results for the percentage payment towards broker and dealers, column
(2) to captive retail sales force, column (3) to the underwriter itself (retained), column (4) to external advertising,
and column (5) to printing and mailing of prospectuses to prospect clients. All columns show estimates using
difference-in-differences estimator robust to staggered treatment concerns (Gardner et al., 2024). The regressors
are a dummy equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), and controls for
fund-month characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The control
variables include a fund’s size (;>6AUM), (;>6) age, turnover, 12b-1 fees, and CAPM alpha in month C. The
monthly sample is from January 2006 to June 2018. All standard errors are two-way clustered by fund and
month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flows8 ,C+1 (%)
(1) (2) (3) (4) (5) (6) (6) (8)

CAPM Alpha8 ,C 0.084*** 0.108***
(0.004) (0.004)

CAPM Alpha8 ,C×Data8 ,C -0.016*** -0.014***
(0.004) (0.004)

Vanguard Alpha8 ,C 0.735*** 0.988***
(0.041) (0.052)

Vanguard Alpha8 ,C×Data8 ,C -0.225*** -0.250***
(0.455) (0.466)

FF3 Alpha8 ,C 0.058*** 0.078***
(0.003) (0.004)

FF3 Alpha8 ,C×Data8 ,C -0.006*** -0.004**
(0.002) (0.002)

FF5 Alpha8 ,C 0.020*** 0.025***
(0.002) (0.003)

FF5 Alpha8 ,C×Data8 ,C 0.000 0.001
(0.001) (0.001)

Controls X X X X X X X X
Fund FE X X X X X X X X
Time FE X × X × X × X ×
Category×Time FE × X × X × X × X
Outcome mean 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188
Outcome SE 6.266 6.266 6.266 6.266 6.266 6.266 6.266 6.266
Obs. 947,079 946,733 947,078 946,732 890,800 873,140 890,801 873,141
Adj. '2 0.094 0.124 0.094 0.126 0.087 0.118 0.079 0.110

Table E.24: Flow-Performance Sensitivity and Data Technologies: This table shows results of panel regression of flow-performance sensitivity and
interaction terms with the adoption of a data technology. The dependent variable is the one-month-ahead fund flow. The regressors are the fund’s
performance in month C, and interaction term with a dummy equal to one if a fund 8 has a data technology in place at month C (Data8 ,C), and controls for
fund-month characteristics. The control variables include a fund’s size (;>6AUM), (;>6) age, turnover, and 12b-1 fees in month C. The first row reports
results for the flow-performance sensitivity (Chevalier and Ellison, 1997). The second row shows results for the interaction term of flow-performance
sensitivity with the Data dummy. Columns (1)-(2) use CAPM alpha as measure of a fund’s performance, columns (3)-(4) use the alpha with respect to a
set of 11 existing Vanguard funds (Berk and van Binsbergen, 2015), columns (5)-(6) use Fama-French 3-factors alpha, and columns (7)-(8) use Fama-French
5-factors alpha. The monthly sample include equity mutual funds and ETFs from March 1993 to December 2023. All standard errors are two-way
clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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